A2 Further Mathematics Unit 6: Pure Mechanics B General instructions for marking GCE Mathematics

- **1.** The mark scheme should be applied precisely and no departure made from it. Marks should be awarded directly as indicated and no further subdivision made.
- 2. <u>Marking Abbreviations</u>

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

- cao = correct answer only
- MR = misread
- PA = premature approximation
- bod = benefit of doubt
- oe = or equivalent
- si = seen or implied

ISW = ignore subsequent working

F.T. = follow through (\checkmark indicates correct working following an error and \checkmark indicates a further error has been made)

Anything given in brackets in the marking scheme is expected but, not required, to gain credit.

3. <u>Premature Approximation</u>

A candidate who approximates prematurely and then proceeds correctly to a final answer loses 1 mark as directed by the Principal Examiner.

4. <u>Misreads</u>

When the <u>data</u> of a question is misread in such a way as not to alter the aim or difficulty of a question, follow through the working and allot marks for the candidates' answers as on the scheme using the new data.

This is only applicable if a wrong value, is used consistently throughout a solution; if the correct value appears anywhere, the solution is not classed as MR (but may, of course, still earn other marks).

- 5. <u>Marking codes</u>
 - 'M' marks are awarded for any correct method applied to appropriate working, even though a numerical error may be involved. Once earned they cannot be lost.
 - 'm' marks are dependant method marks. They are only given if the relevant previous 'M' mark has been earned.
 - 'A' marks are given for a numerically correct stage, for a correct result or for an answer lying within a specified range. They are only given if the relevant M/m mark has been earned either explicitly or by inference from the correct answer.
 - 'B' marks are independent of method and are usually awarded for an accurate result or statement.
 - 'S' marks are awarded for strategy
 - 'E' marks are awarded for explanation
 - 'U' marks are awarded for units
 - 'P' marks are awarded for plotting points
 - 'C' marks are awarded for drawing curves

A2 Further Mathematics Unit 6: Further Mechanics B Solutions and Mark Scheme

Question Number	Solution	Mark	AO	Notes
1. (a)	N2L on ball, upwards positive - $0.01v^2 - 0.4g = 0.4a$	M1 A1	AO3 AO2	dim correct correct equation
	$0.4v\frac{dv}{dx} = -3.92 - 0.01v^2$			
	$40 v \frac{dv}{dx} = -(392 + v^2)$	A1	AO2	convincing
(b)	$40\int \frac{v}{392+v^2}\mathrm{d}v = -\int \mathrm{d}x$	M1	AO2	separate variables
	$20\ln(392 + v^2) = -x + C$	A1 A1	AO1 AO1	$ln(392 + v^2)$ everything correct
	When $t = 0$, $v = 17$, $x = 0$ 20 ln(392 + 17 ²) = C C = 20ln(681)	m1 A1	AO2 AO1	use of initial conditions
	$x = 20\ln(681) - 20\ln(392 + v^2)$			
	$x = 20\ln\left(\frac{681}{392 + v^2}\right)$			
	$\frac{x}{20} = \ln\left(\frac{681}{392 + v^2}\right)$			
	$\left(\frac{681}{392+v^2}\right) = e^{0.05x}$	m1	AO1	
	$681 = (392 + v^2) e^{0.05x}$			
	$v^2 = 681e^{-0.05x} - 392$			
	$v = \sqrt{681e^{-0.05x} - 392}$	A1	AO1	
(c)	At greatest height $v = 0$	M1	AO2	
	$x = 20\ln\left(\frac{681}{392}\right) = 11.05$	A1	AO1	сао
(d)	Speed of ball when it returns to <i>O</i> is less than 17 ms ⁻¹ .	B1	AO2	
	This is because energy is lost in overcoming air resistance.	E1	AO2	
		[14]		

Question Number	Solution	Mark	AO	Notes
2. (a)	y x y x y b x y b x y y x y y y z z z z z z z z z z			
	Let ρ be mass per unit volume. By symmetry, c of m lies on Ox . Divide cone into slices parallel to base. Consider slice PQ , distance x from O and of thickness δx .	M1	AO2	
	By similar triangles, radius of slice is $\frac{bx}{h}$. Mass of slice = $\frac{\pi b^2 x^2}{h^2} \rho \delta x$ acting x from O. Mass of cone = $\frac{\pi b^2 h}{3} \rho$ acting at \overline{x} from O.			
	3 Take moments about <i>y</i> axis	m1	AO2	
	$\frac{\pi b^2 h}{3} \rho \overline{x} = \int_0^h \frac{\pi b^2 x^2}{h^2} \times x \rho dx$	A1	AO2	
	$\frac{1}{3}h\overline{x} = \frac{1}{h^2} \left[\frac{1}{4}x^4\right]_0^h$			
	$\overline{x} = \frac{3}{h^3} \frac{h^4}{4}$ $\overline{x} = \frac{3h}{4}$			
	$\overline{x} = \frac{1}{4}$	A1	AO2	

Question Number	Solution	Mark	AO	Notes
2 (b)	v 1 2 1 x 1 x			
	Shape mass distance			
	$C_1 \qquad \frac{\pi}{3}(2)^2 \times 3\rho \qquad \frac{3}{4} \times 3$ $C_2 \qquad \frac{\pi}{3} \times 1^2 \times 2\rho \qquad 1 + \frac{3}{4} \times 2$	B1	AO1	
	$C_2 \qquad \frac{\pi}{3} \times 1^2 \times 2\rho \qquad 1 + \frac{3}{4} \times 2$	B1	AO1	
	Rem. $\frac{\pi}{3}\rho(12-2)$ \overline{h}	B1	AO1	
	Take moments about <i>y</i> axis $\frac{\pi}{3}\rho \times 10 \times \overline{h} = \frac{\pi}{3} \times 12 \times \rho \times \frac{9}{4}$	M1	AO3	
	$-\frac{\pi}{3} \times 2\rho \times \frac{5}{2}$	A1	AO1	
	$\overline{h} = \frac{11}{5}$	A1	AO1	

Question Number	Solution	Mark	AO	Notes
2. (c)	Draw <i>HK</i> perpendicular to <i>OG</i> .			
	$OH = \frac{\sqrt{13}}{3}, OG = \frac{11}{5}$			
	Angle $HOK = \theta$, $\tan\theta = \frac{2}{3}$	B1	AO3	
	$\sin\theta = \frac{2}{\sqrt{13}}, \cos\theta = \frac{3}{\sqrt{13}}$	B1	AO3	
	$HK = OH\sin\theta = \frac{\sqrt{13}}{3} \times \frac{2}{\sqrt{13}} = \frac{2}{3}$	B1	AO3	
	$KG = \frac{11}{5} - OH\cos\theta = \frac{11}{5} - \frac{\sqrt{13}}{3} \times \frac{3}{\sqrt{13}}$			
	$KG = \frac{6}{5}$	B1	AO3	
	$\tan \alpha = \frac{2}{3} \div \frac{6}{5} = \frac{2}{3} \times \frac{5}{6} = \frac{5}{9}$	B1	AO3	
		[15]		

GCE AS and A LEVEL FURTHER MATHEMATICS Sample Assessment Materials 69

Question Number	Solution	Mark	AO	Notes
3. (a)	Using N2L	M1	AO3	
	$-0.2 - 0.03v = 9\frac{dv}{dt}$ $900\frac{dv}{dt} = -(20 + 3v)$	A1	AO2	
	$900\frac{\mathrm{d}v}{\mathrm{d}t} = -(20+3v)$	A1	AO2	
(b)	$900\int \frac{\mathrm{d}v}{20+3v} = -\int \mathrm{d}t$	M1	AO2	sep. var.
	$900 \times \frac{1}{3}\ln(20+3v) = -t (+C)$	A1	AO1	$\ln(20 + 3\nu)$
	$300 \times \frac{1}{3} m(20 + 3v) = -i(+c)$	A1	AO1	all correct
	When $t = 0, v = 20$ C = 300 ln 80	m1	AO2	used
	Therefore $t = 300 \ln(80) - 300 \ln(20 + 3v)$	A1	AO1	
	$t = 300 \ln \left(\frac{80}{20+3\nu}\right)$			
(C)	When body is at rest, $v=0$ $T = 300 \ln(80) - 300 \ln(20)$ $T = 300 \ln(4)$	m1	AO2	used
	$T = \underline{416 \text{ s}}$	A1	AO1	сао
		[10]		

Question Number	Solution	Mark	AO	Notes
4. (a)	$\overline{x} = 4 \text{ (cm)}$	B1	AO1	
(b)	ShapemassdistanceGPQE644	B1	AO1	
	$EFG \qquad 8\pi \qquad 8 + \frac{16}{3\pi}$	B1	AO3	
	APB $\pi = \frac{8}{3\pi}$			
	CQD $\pi = \frac{8}{3\pi}$	B1	AO1	either APB or CQD
	ABCDEFG $64+6\pi$ \overline{y}	B1	AO1	areas
	Moments about BC	M1	AO3	
	$(64+6\pi)\overline{y} = 64 \times 4 + 8\pi \times (8 + \frac{16}{3\pi})$			
	$(64+6\pi)\overline{y} = 64 \times 4 + 8\pi \times (8 + \frac{16}{3\pi}) - 2\pi \times \frac{8}{3\pi}$	A1	AO1	
	\overline{y} = 5.967 (cm) (correct to 3 d.p.)	A1	AO1	
(C)	If hanging in equilibrium, vertical	N/1	4.00	correct tricpale
	passes through centre of mass. $a_{-1}(8-5.967)$	M1	AO3	correct triangle
	$\theta = \tan^{-1}\left(\frac{8-5\cdot967}{4}\right)$	A1	AO1	
	<i>θ</i> = 26.94(1954)°	A1	AO1	
		[11]		

Question Number	Solution	Mark	AO	Notes
5. (a)	$\mathbf{r}_A = 11\mathbf{i} + 6\mathbf{j} + (2\mathbf{i} + 7\mathbf{j})t$	M1	AO3	
	$\mathbf{r}_B = 7\mathbf{i} + 10\mathbf{j} + (5\mathbf{i} + 4\mathbf{j})t$	A1	AO1	
	If particles collide, $\mathbf{r}_A = \mathbf{r}_B$ for some value of <i>t</i> .			
	For i component 11 + 2t = 7 + 5t	M1	AO2	
	$t = \frac{4}{2}$			
	3 For j component 6 + 7t = 10 + 4t $t = \frac{4}{2}$	A1	AO2	
	$t = \frac{1}{3}$			
	Since the value for <i>t</i> for both components are equal, the			
	particles collide.	A1	AO2	
	Conservation of momentum $m(2\mathbf{i} + 7\mathbf{j}) + 2m(5\mathbf{i} + 4\mathbf{j}) = 3m(x\mathbf{i} + y\mathbf{j})$ $12\mathbf{i} + 15\mathbf{j} = 3x\mathbf{i} + 3y\mathbf{j}$	M1 A1	AO3 AO2	
	x = 4, y = 5	m1	AO2	
	$x\mathbf{i} + y\mathbf{j} = 4\mathbf{i} + 5\mathbf{j}$ (Ns)	A1	AO1	
(b)	I = change in momentum $\mathbf{I} = 2m(4\mathbf{i} + 5\mathbf{j}) - 2m(5\mathbf{i} + 4\mathbf{j})$	M1	AO3	used
	$\mathbf{I} = m(-2\mathbf{i} + 2\mathbf{j})$			
	$\mathbf{I} = 2m(-\mathbf{i} + \mathbf{j}) \text{ (Ns)}$	A1	AO1	
(C)	Loss in KE = $\frac{1}{2}m(4+49) + \frac{1}{2}2m(25+16)$			
	$-\frac{1}{2} \times 3m(16+25)$	M1	AO3	
	Loss in KE = $6m$ (J)	A1	AO1	
		[13]		

Question Number	Solution	Mark	AO	Notes
6. (a)	At equilibrium $12g = \frac{\lambda \times 0.05}{0.75}$	M1	AO3	use of Hooke's Law
	$\lambda = \underline{1764 (N)}$	A1	AO1	
(b)	Consider a displacement x from the equilibrium position.			
	Apply N2L $12g - T = 12 \ddot{x}$	M1	AO3	
	$12g - \frac{\lambda(0 \cdot 05 + x)}{0 \cdot 75} = 12 \ddot{x}$	A1	AO3	ft λ
	$\ddot{x} = -(14)^2 x$ Therefore is SHM (with $\omega = 14$).	A1	AO2	
	Amplitude = <u>0.05 (m)</u>	B1	AO1	
	Period = $\frac{2\pi}{\omega} = \frac{\pi}{7}$ s	B1	AO1	
(c)	Maximum speed = $a\omega$	M1	AO3	used
	= 0.05×14 = <u>0.7 (ms⁻¹)</u>	A1	AO1	ft a
(d)	Use of $v^2 = \omega^2 (a^2 - x^2)$ with $\omega = 14$, $a = 0.05(c)$, $x = 0.03$ $v^2 = 14^2 (0.05^2 - 0.03^2)$	M1 A1	AO3 AO2	ft a
	$=14^2 \times 0.04^2$		102	
	$v = 0.56 (\text{ms}^{-1})$	A1	AO1	сао
(e)	Displacement from Origin = x $x = 0.05\cos(14t)$ When $t = 1.6$	M1	AO3	(Accept ±)
	$x = 0.05 \cos(14 \times 1.6)$	A1	AO2	ft a (Accept ±)
	x = (-)0.046 (m)	A1	AO1	сао
(f)	The seat is modelled as a particle. The spring is assumed to be light.	B1 B1	AO3 AO3	
		[17]		