

A-level MATHEMATICS 7357/1

Paper 1

Mark scheme

June 2020

Version: 1.0 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre. Copyright © 2020 AQA and its licensors. All rights reserved.

Mark scheme instructions to examiners

General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- marking instructions that indicate when marks should be awarded or withheld including the principle on which each mark is awarded. Information is included to help the examiner make his or her judgement and to delineate what is creditworthy from that not worthy of credit
- a typical solution. This response is one we expect to see frequently. However credit must be given on the basis of the marking instructions.

If a student uses a method which is not explicitly covered by the marking instructions the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Key to mark types

M	mark is for method	
R	mark is for reasoning	
Α	mark is dependent on M marks and is for accuracy	
В	mark is independent of M marks and is for method and accuracy	
E	mark is for explanation	
F	follow through from previous incorrect result	

Key to mark scheme abbreviations

CAO	correct answer only
CSO	correct solution only
ft	follow through from previous incorrect result
'their'	Indicates that credit can be given from previous incorrect result
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
sf	significant figure(s)
dp	decimal place(s)

AS/A-level Maths/Further Maths assessment objectives

A	0	Description					
	AO1.1a	Select routine procedures					
AO 1	AO1.1b	Correctly carry out routine procedures					
	AO1.2	Accurately recall facts, terminology and definitions					
	AO2.1	Construct rigorous mathematical arguments (including proofs)					
	AO2.2a	Make deductions					
AO2	AO2.2b	Make inferences					
AUZ	AO2.3	Assess the validity of mathematical arguments					
	AO2.4	Explain their reasoning					
	AO2.5	Use mathematical language and notation correctly					
	AO3.1a	Translate problems in mathematical contexts into mathematical processes					
	AO3.1b	Translate problems in non-mathematical contexts into mathematical processes					
	AO3.2a	Interpret solutions to problems in their original context					
	AO3.2b	Where appropriate, evaluate the accuracy and limitations of solutions to problems					
AO3	AO3.3	Translate situations in context into mathematical models					
	AO3.4	Use mathematical models					
	AO3.5a	Evaluate the outcomes of modelling in context					
	AO3.5b	Recognise the limitations of models					
	AO3.5c	Where appropriate, explain how to refine models					

Examiners should consistently apply the following general marking principles

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to students showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the student to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Work erased or crossed out

Erased or crossed out work that is still legible and has not been replaced should be marked. Erased or crossed out work that has been replaced can be ignored.

Choice

When a choice of answers and/or methods is given and the student has not clearly indicated which answer they want to be marked, mark positively, awarding marks for all of the student's best attempts. Withhold marks for final accuracy and conclusions if there are conflicting complete answers or when an incorrect solution (or part thereof) is referred to in the final answer.

Q	Marking instructions	AO	Marks	Typical solution
1a	Circles the correct answer	1.1b	B1	$ x < \frac{9}{2}$
	Subtotal		1	
1b	Circles the correct answer	1.1b	B1	3
	Subtotal		1	
	Question Total		2	

Q	Marking instructions	AO	Marks	Typical solution
2	Circles the correct answer	2.3	R1	$f(x) = \frac{1}{x}$
	Total		1	

Q	Marking instructions	AO	Marks	Typical solution
3	Circles the correct answer	2.2a	R1	1
	Total		1	

Q	Marking instructions	AO	Marks	Typical solution
4(a)	Sketches an inverted V shape	1.1a	M1	
	graph			
	Condone lack of symmetry			(3, 4)
	Sketches an inverted V shape in	1.1b	A1	
	the correct quadrants			
	Condone lack of symmetry or			
	absence of curve to the left of			
	(0,-2)			(5, 0)
	Correctly labels all three	1.1b	A1	(1,0)
	intersections with coordinate			
	axis.			(0, -2)
	Accept the coordinates of each			
	point or x values on x axis and y			/
	value on y axis			
	Ignore any other values			
	Total		3	
4(b)	Obtains at least one correct	1.1a	M1	2 < x < 4
	critical value using a correct			
	method. Can be read off graph			
	or calculator			
	Condone use of equals or			
	incorrect inequality sign			
	Writes correct solution in a	1.1b	A1	
	correct form			
	Accept $x > 2$, $x < 4$ or (2, 4)			
	Subtotal		2	
	Question Total		5	

Q	Marking instructions	AO	Marks	Typical solution
5	Selects and begins to use a suitable method of proof. Exhaustion: Must check at least two correct values for n in the range 0 ≤ n < 4 and make at least two correct comparisons. Comparisons are implied by ticks/crosses or use of true/false Direct proof: Takes logs to any base of both sides and uses a law of logs correctly once Contradiction: Must be clear they are attempting contradiction with "0 ≤ n < 4 and 2 ⁿ⁺² ≤ 3 ⁿ " assumed explicitly. Condone strict inequality Completes a reasoned mathematical argument, proving 2 ⁿ⁺² > 3 ⁿ when n is an integer and 0 ≤ n < 4. Must include a fully correct concluding statement which refers to 'integer' or lists the four integers If using direct proof or contradiction	3.1a	M1	Typical solution $ \begin{array}{c cccc} $
	they must use the laws of logs correctly to remove n from the exponent. Condone use of equality if direct proof used			
	Total		2	

Q	Marking instructions	AO	Marks	Typical solution
6(a)(i)	Explains that Tom's solution does not include an arbitrary constant Accept Tom forgot the +c There is no constant on the RHS	2.4	E1	Tom's solution has no constant of integration
	Subtotal		1	
6(a)(ii)	Explains that the constant is in the wrong place or Explains that the k should not be there or that $k = 1$ or Shows that differentiating does not give $\frac{1}{x}$ or The constant has been multiplied instead of being added or	2.4	E1	Although there is a constant, it is in the wrong place
	It should be $\ln kx$ not $k \ln x$ Subtotal		1	
6(b)	Rewrites $\ln Ax$ as $\ln A + \ln x$ Condone use of any letter for A to demonstrate the log rule used Condone use of log without a specified base	1.1a	M1	$\ln Ax = \ln A + \ln x$ This is equivalent as $c = \ln A$
	Deduces explicitly that $c = \ln A$ clearly demonstrating equivalence OE	2.2a	R1	
	Subtotal		2	
	Question Total		4	

Q	Marking instructions	AO	Marks	Typical solution
7(a)(i)	Substitutes 2 into formula correctly	1.1a	M1	$u_2 = -1$
	to obtain $u_2 = -1$			
	PI by correct $u_3 = 2$			$u_3 = 2$
	Obtains correct $u_3 = 2$	1.1b	A1	
	and no further working resulting in			
	a contradictory value for u_3			
	Subtotal		2	
7(a)(ii)	Deduces correct $u_{50} = -1$	2.2a	B1	$u_{50} = -1$
	Subtotal		1	
7(b)	Deduces correct $u_1 = -2$	2.2a	B1	$u_1 = -2$
	Accept any correct value			
	eg $\sqrt{2}$ or $-\sqrt{2}$			
	Condone if ±2 seen			
	Subtotal		1	
	Question Total		4	

Q	Marking instructions	AO	Marks	Typical solution
8(a)	Uses sin = -1 in the model to obtain	3.4	M1	
O(u)	-3.87 + 11.7	0.1	1011	$\sin\left(\frac{2\pi(t+101.75)}{365}\right) = -1$
	If a <i>t</i> value is used then the sine			,
	must evaluate to -1			-3.87 + 11.7 = 7.83
	or			7hours 50mins
	Differentiates, sets the derivative			
	equal to 0 and obtains a value for <i>t</i>			
	which they substitute back into the			
	formula			
	Obtains correct answer	3.2a	A1	-
		3.Za	AI	
	Accept 470 minutes, $\frac{47}{6}$ or $7\frac{5}{6}$ hours			
	Subtotal		2	
8(b)	Uses model to form equation or	3.4	M1	$3.87 \sin\left(\frac{2\pi(t+101.75)}{365}\right) + 11.7 = 14$
	inequality with H =14			365
	Condone incorrect inequality			
	Solves equation to obtain at least	1.1b	A1	t = 300.22 or t = 408.77
	two correct values of t			
	Can be rounded or truncated			408 - 300 = 108
	Eg -64.77, 43.779, 300.22, 408.77			
	Subtracts an appropriate pair of t	3.2a	A1	
	values to obtain number of			
	consecutive days			
	Condone any rounding to the			
	nearest whole number or truncation			
	of their pair of values			
	Accept 109 or 107			
	Alternative method =			
	43 + (365 – 300) = 108			
	Subtotal		3	
8(c)	Explains that Sofia's refinement	3.3	M1	Sofia's refinement would increase
	would increase the amplitude of the			the range of the graph
	graph			
	Accept			Sofia's graph suggests this is not the
	The range of the graph would			case, so the refinement is not
	increase			appropriate
	It would increase the fluctuation of			
	the graph			
			A 4	-
	Explains that Sofia's refinement is	3.5c	A1	
	not appropriate as her data/graph			
	suggests a lower amplitude OE		_	
	Subtotal		2	
	Question Total		7	

Q	Marking instructions	AO	Marks	Typical solution
9(a)(i)	Deduces an appropriate value for x and substitutes into at least one side of the given identity Any value of $x \neq -2, -1$ Shows that LHS \neq RHS and concludes that Chloe's answer must be incorrect Accept $\frac{2x^2 + x}{(x+1)(x+2)^2} \neq \frac{1}{x+1} - \frac{6}{(x+2)^2}$	2.2a 2.1	M1	$\frac{2x^2 + x}{(x+1)(x+2)^2} \equiv \frac{1}{x+1} - \frac{6}{(x+2)^2}$ Let $x = 0 \Rightarrow LHS = 0$ $RHS = \frac{1}{1} - \frac{6}{4} = -\frac{1}{2} \neq 0$ $\therefore \text{Chloe's answer must be incorrect}$
	Subtotal		2	
9(a)(ii)	Explains that Chloe should have included an additional term with $x + 2$ in the denominator or Explains that Chloe should have included $(Bx + C)$ as the numerator for $(x + 2)^2$	2.3	E1	Chloe should have included $\frac{c}{x+2}$
	Subtotal		1	
9(b)	Writes an identity of the correct form Condone use of equals signs	1.1a	M1	$\frac{2x^2 + x}{(x+1)(x+2)^2} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$ $2x^2 + x = A(x+2)^2 + B(x+1)(x+2) + C(x+1)$
	Uses a suitable method to obtain all three of 'their' constants. For example by substituting or comparing coefficients Only award the M1 if the identity used results from correctly removing fractions from 'their' chosen partial fraction form	3.1a 1.1b	M1	$x = -1 \Rightarrow A = 1$ $x = -2 \Rightarrow C = -6$ $x^{2} : A + B = 2 \Rightarrow B = 1$ $\frac{2x^{2} + x}{(x+1)(x+2)^{2}} = \frac{1}{x+1} + \frac{1}{x+2} - \frac{6}{(x+2)^{2}}$
	Obtains any two correct constants If $Bx + C$ is used, then $B = 1$ and C = -4	1.10	AI	
	Obtains all three correct values for the constant numerators	1.1b	A1	
	Subtotal		4	
	Question Total		7	

Q	Marking instructions	AO	Marks	Typical solution
10(a)(i)		1 1 4 5	D1	21
10(a)(i)	Obtains correct first term Subtotal	1.1b	B1 1	21
10(a)(ii)	Obtains correct common difference	1.1b	B1	4
	Subtotal		1	
10(a)(iii)	Obtains correct number of terms Subtotal	1.1b	B1	16
10(b)(i)	Finds or uses at least one of the first term, the common difference, the last term or the number of terms correctly or Expresses given series as a difference of two series using $n=1$ to 100 and $n=1$ to 9. Either $\sum_{n=1}^{100} (br+c) - \sum_{n=1}^{n=9} (br+c)$ or $b \sum_{n=1}^{100} r + 100c - b \sum_{n=1}^{n=9} r - 9c$	1.1b	B1	$n = 91$ $a = 10b + c$ $d = b$ $L = 100b + c$ $\frac{91}{2}(2(10b + c) + 90b) = 7735$ $91(55b + c) = 7735$ $55b + c = 85$
	Forms an equation in terms of b and c for the sum of n terms using 'their' first term, 'their' number of terms and either 'their' common difference or 'their' last term Alternative $\frac{100}{2}[2b + 2c + 99b] - \frac{9}{2}[2b + 2c + 8b]$	3.1a	M1	
	Obtains correct equation ACF Alternative $5050b + 100c - 45b - 9c = 7735$ or $5005b + 91c = 7735$	1.1b	A1	
	Completes rigorous argument to show the required result. This must include at least one single step of correct working between the initial correct formula and the given answer AG Subtotal	2.1	R1	

10(b)(ii)	Uses or writes down $a + 39d$ or $a + d$ with 'their' expressions for a and d Must be in terms of b and c	3.1a	B1	4(11b+c) = 49b+c $5b-3c = 0$
	Uses 'their' a + 39 d and a + d consistently to form 'their' equation $u_{40} = 4u_2$ in terms of b and c . Condone use of $50b + c$ for the fortieth term Condone $11b + c = 4(49b + c)$ OE with 'their' a and d in terms of b and c	1.1a	M1	b = 1.5 $c = 2.5$
	Solves $55b + c = 85$ with 'their' other equation involving b and c PI by obtaining correct values of b and c or Obtains $b = -12.75$ and $c = 786.25$ from using $11b + c = 4(49b + c)$	1.1a	M1	
	Obtains correct values of b and c	1.1b	A1	
	Subtotal		4	
	Question Total		11	

Q	Marking Instructions	AO	Marks	Typical Solution
11(a)	Evaluates f(1) and f(6) using	1.1a	M1	f(1) = 1.945910149
	exact logs or decimals			f(6)= 0.69314718
	Award if seen embedded in			$A = \frac{5}{2} (1.9459 + 0.6931)$
	calculations using more than one			= 6.5976
	trapezium	1 1h	Λ 1	=6.60 cm ²
	Evaluates an approximate value of the area of R	1.1b	A1	
	AWRT 6.60			
	Condone omission of units			
	Subtotal		2	
11(b)	Writes or uses the six ordinates	1.1b	B1	ν f(ν)
11(2)	as In 7, In 6, In 5, In 4, In 3 In 2	1.16]	x f(x)
	or			1 1.9459
	Obtains the values of the correct			2 1.7918
	six ordinates in decimal form			3 1.6094
	Uses the correct formula for the	1.1a	M1	4 1.3863
	trapezium rule with their six			5 1.0986
	ordinates and $h = 1$			6 0.6931
	Award this mark if seven_			Area = $\frac{1}{2}$ x1x(1.9459+0.6931+2
	ordinates used with $h = \frac{5}{6}$			(1.7918+1.6094+1.3863+1.0986))
	Answer for seven = 7.2145648			(1.7916+1.0094+1.3003+1.0900))
	Evaluates an approximate value	1.1b	A1	Area= 7.205633 cm ²
	for the area of R.			7.20000 SIII
	Must have used six ordinates			Volume of Shape B
	AWRT 7.2			= 4 x 7.205633 x 0.2
	PI by correct final answer			=5.7645 cm ³
	Forms an expression for the mass	3.1b	M1	
	of either one section or all four			Mass of Shape B =
	sections using 'their' area and			5.7645cm ³ x 10.5 g/cm ³
	consistent units			=60.52731 g
	PI by correct final answer	3.2a	A1	=61 g
	Obtains an approximate value for the correct mass of Shape B	3.Za	AI	
	Must state units			
	If seven ordinates used this mark			
	can be awarded as answer would			
	be 61g			
	CAO			
	Subtotal		5	
11(c)(i)	Explains that the trapezia are all	3.5a	E1	The trapezia are all below the curve
	below the curve			
	or			
	Explains that the curve is concave			
	or			
	Draws a diagram and indicates			
	the gaps Subtotal		1	
11(c\/ii\	Explains that numbers have been	3.5a	E1	Numbers in the calculation have
11(c)(ii)	rounded	ง.งa		been rounded
	Subtotal		1	BCCII TOUTIUCU
	Question Total		9	
L	Question rotal		9	

Q	Marking instructions	AO	Marks	Typical solution
<u> </u>	marking matructions	70	IVIAI NO	i ypicai solution
12(a)	Substitutes $x = \sqrt{3}$ and $y = \frac{\pi}{6}$ to obtain an equation or an	1.1a	M1	$\left(\sqrt{3}\right)^3 \sin\frac{\pi}{6} + \cos\frac{\pi}{6} = A\sqrt{3}$
	expression for A	0.4	R1	$-\frac{3\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = A\sqrt{3}$
	Completes argument to show A = 2	2.1	R1	${2} + {2} = A\sqrt{3}$
	Must clearly show use of			$\frac{3}{2} + \frac{1}{2} = A$
	$cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$ and $sin\frac{\pi}{6} = \frac{1}{2}$			$\frac{1}{2} + \frac{1}{2} = A$
	AG			A = 2
	Subtotal		2	
12(b)(i)	Uses implicit differentiation correctly at least once with sight of $\sin y \frac{dy}{dx}$ or $\cos y \frac{dy}{dx}$	3.1a	M1	$3x^2 \sin y + x^3 \cos y \frac{dy}{dx} - \sin y \frac{dy}{dx} = 2$
	Condone sign error			$\frac{dy}{dx}(x^3\cos y - \sin y) = 2 - 3x^2\sin y$
	Uses product rule with sight of	3.1a	M1	$\int dv = 2 - 3x^2 \sin v$
	$Px^2 \sin y \pm x^3 \cos y \frac{dy}{dx}$	J. 1a	IVII	$\frac{dy}{dx} = \frac{2 - 3x^2 \sin y}{x^3 \cos y - \sin y}$
	Condone omission of $\frac{dy}{dx}$			
	Obtains equation of the form $Px^{2} \sin y \pm x^{3} \cos y \frac{dy}{dx}$ $\pm \sin y \frac{dy}{dx} = 2$	1.1b	A1	
	Obtains completely correct equation	1.1b	A1	-
	Isolates $\frac{dy}{dx}$ terms and factorises	2.1	R1	1
	to complete rigorous argument with no slips to show the given result			
	Subtotal		5	
12(b)(ii)	Substitutes $x = \sqrt{3}$ and $y = \frac{\pi}{4}$	1.1a	M1	$dv = 2 - 3(\sqrt{3})^2 \sin \frac{\pi}{7}$
	to obtain an expression for the gradient			$\frac{dy}{dx} = \frac{2 - 3(\sqrt{3})^2 \sin\frac{\pi}{6}}{(\sqrt{3})^3 \cos\frac{\pi}{6} - \sin\frac{\pi}{6}}$
	Obtains correct gradient of $-\frac{5}{8}$ OE	1.1b	A1	$=-\frac{5}{8}$
	Subtotal		2	

12(b)(iii)	Forms equation for the tangent (condone normal) at P using 'their' gradient and $\left(\sqrt{3}, \frac{\pi}{6}\right)$ ACF or Writes the equation as $y = mx + c$ using 'their' gradient of tangent (condone normal)	3.1a	M1	$y - \frac{\pi}{6} = -\frac{5}{8}(x - \sqrt{3})$ $0 - \frac{\pi}{6} = -\frac{5}{8}(x - \sqrt{3})$
	and substitutes $\left(\sqrt{3}, \frac{\pi}{6}\right)$ to obtain an equation in c PI by correct exact value for x			$x = \sqrt{3} + \frac{4\pi}{15}$
	Obtains fully correct equation for the 'their' tangent at P ACF	1.1b	A1F	
	Note $c = \frac{5\sqrt{3}}{8} + \frac{\pi}{6}$ or $c = 1.606$ Follow through 'their' gradient of tangent from 12(b)(ii) must be to at least 3 dp			
	Substitutes $y = 0$ into 'their' tangent (condone normal) equation and solves to find the x coordinate of Q Accept decimals	3.1a	M1	
	Obtains $x = \sqrt{3} + \frac{4\pi}{15}$ OE must be exact form $Eg x = \frac{8}{5} \left(\frac{5\sqrt{3}}{2} + \frac{\pi}{5} \right)$	1.1b	A1	
	$\frac{\text{Lg } x - \frac{1}{5} \left(\frac{8}{8} + \frac{1}{6}\right)}{\text{Subtotal}}$		4	
	Question Total		13	

Q	Marking instructions	AO	Marks	Typical solution
13(a)(i)	Rearranges to make <i>x</i> the subject by isolating <i>x</i> terms	1.1a	M1	$y = \frac{2x+3}{x-2}$
	or Swaps <i>x</i> and <i>y</i> and isolates <i>y</i> terms			xy - 2y = 2x + 3 xy - 2x = 2y + 3 x(y - 2) = 2y + 3
	Obtains correct rearrangement and factorises ACF PI by final correct answer	1.1b	A1	$x = \frac{2y+3}{y-2}$ $f^{-1}(x) = \frac{2x+3}{x-2} \ x \neq 2$
	Obtains $f^{-1}(x)$ and states domain	2.5	R1	$f^{-1}(x) = \frac{1}{x-2} x \neq 2$
	Must use fully correct notation			
	Subtotal		3	
13(a)(ii)	Obtains any valid expression in x for $ff(x)$ Can be left unsimplified ISW	1.1b	B1	ff(x) = x
	Subtotal		1	
13(b)(i)	Deduces the greatest value of	2.2a	B1	g(4) = 6
	g by evaluating g (4)	3.1a	B1	Vertex at (1.25 , -1.5625)
	Obtains the minimum value of <i>g</i> States the range using their	2.5	R1F	Voltox at (1.20 ; -1.3020)
	finite greatest value and finite minimum value using set notation or interval notation Accept [-1.5625,6] in interval notation For set notation - use of none curly brackets or commas scores R0	2.0		$\{y: -1.5625 \le y \le 6\}$
	Subtotal		3	
13(b)(ii)	Demonstrates that g is a many to one function by using an appropriate method eg Sketches the function Or Evaluates $g(x)$ at two points that give the same answer.	2.4	E1	g(0) = 0 = g(2.5) g is many to one so it does not have an inverse.
	Deduces that g is many to one and states that g has no inverse Or Explains that g is not one to one and states that g has no inverse	2.2a	E1	
	Subtotal		2	
	Subtotal			

	Subtotal Question Total		2 15	
	Determines the exact value of <i>a</i> giving a clear reason for the rejection of the negative root	2.4	R1	$a = \frac{5 + \sqrt{57}}{4}$
	PI by solving correct quadratic PI by sight of $\frac{5+\sqrt{57}}{4}$ or $\frac{5-\sqrt{57}}{4}$			$x = {4}$ $a > 0 \text{ since } 0 \le x \le 4$
13(d)	States $g(x) = 2$ or States $2x^2 - 5x - 4 = 0$	3.1a	M1	$2x^{2} - 5x - 4 = 0$ $x = \frac{5 \pm \sqrt{57}}{4}$
	Subtotal		4	
	Terms in the numerator and denominator can be in any order AG			
	show the required result Must have expanded all three quadratics correctly	2.1		$=\frac{48+29x-2x^2}{2x^2-8x+8}$
	Expands at least two quadratics correctly Completes rigorous argument to	1.1a 2.1	M1 R1	$2(x^2-4x+4)$
	$2(x-2)^2$ or $(x-2)^2$ correctly The fraction(s) must have the fully correct structure			$= \frac{2(4x^2+12x+9)-5(2x^2-x-6)}{2(x^2-4x+4)}$
	Obtains common denominator of	1.1b	A1	$= \frac{2(2x+3)^2 - 5(2x+3)(x-2)}{2(x-2)^2}$
13(c)	Substitutes $f(x)$ into $g(x)$ correctly	1.1a	M1	$gf(x) = \frac{2\left(\frac{2x+3}{x-2}\right)^2 - 5\left(\frac{2x+3}{x-2}\right)}{2}$

Q	Marking instructions	AO	Marks	Typical solution
14(a)	Evaluates $f(0) = -1$ and $f(1) = 2$ or	1.1a	M1	f(0) = -1 < 0 f(1) = 3 - 1 = 2 > 0
	Evaluates two other suitable appropriate values correct to 1 sig fig			Change of sign implies root therefore α is between 0 and 1
	Completes argument correctly stating $f(0) < 0$ and $f(1) > 0$ and concludes that $0 < \alpha < 1$	2.1	R1	
	Subtotal		2	
14(b)(i)	Uses product rule to obtain an expression of the form $Ax^{\frac{1}{2}}(3^{x}) + Bx^{-\frac{1}{2}}(3^{x})$	3.1a	M1	$f'(x) = x^{\frac{1}{2}}(3^x)\ln 3 + \frac{1}{2}x^{-\frac{1}{2}}(3^x)$
	A and /or B can be positive or negative			$=3^x\left(\ln 3\sqrt{x}+\frac{1}{2\sqrt{x}}\right)$
	Obtains fully correct $f'(x)$	1.1b	A1	$=3^x \left(\frac{2x \ln 3}{2\sqrt{x}} + \frac{1}{2\sqrt{x}}\right)$
	Completes convincing argument with no slips to show the required result.	2.1	R1	$=3^x \left(\frac{x \ln 9}{2\sqrt{x}} + \frac{1}{2\sqrt{x}}\right)$
	AG			$=3^x\left(\frac{1+x\ln 9}{2\sqrt{x}}\right)$
	Subtotal		3	
	Forms correct Newton-Raphson expression PI by correct value of x_2 or x_3 stated to at least 3 decimal places	1.1a	M1	$x_{n+1} = x_n - \frac{(3^{x_n} \sqrt{x_n} - 1)}{\frac{3^{x_n} (1 + x_n \ln 9)}{2\sqrt{x_n}}}$
14(b)(ii)	Obtains the correct value of x_3	1.1b	A1	$= x_{n+1} = x_n - \frac{2\sqrt{x_n} (3^{x_n}\sqrt{x_n} - 1)}{3^{x_n}(1 + x_n \ln 9)}$
	Must be stated to five decimal places			x_2 = 0.5829716 x_3 = 0.4246536 $x_3 \approx 0.42465$
	Subtotal		2	
14(b)(iii)	Explains that convergence is impossible Must use the word convergence or convergent	2.4	E1	Convergence is impossible as all values of x_n would equal 0
	Explains that the tangent at $x = 0$ is vertical or	2.4	E1	
	Explains all values of x_n would equal 0 or			
	Demonstrates that several values of x_n would be 0			
	Subtotal		2	
	Question Total		9	

0	Marking instructions	AO	Marks	Typical solution
Q 15	Marking instructions Forms a single equation	3.1a	M1	Typical solution
13	eliminating x or y	J. 1a	IVII	$6 - e^{\frac{\lambda}{2}} = e^x$
	Obtains a correct rearranged	1.1b	A1	<u> </u>
	quadratic equation. Either	1.16	731	$e^x + e^{\frac{x}{2}} - 6 = 0$
	$e^{x} + e^{\frac{x}{2}} - 6 = 0$			$\left(e^{\frac{x}{2}} + 3\right)\left(e^{\frac{x}{2}} - 2\right) = 0$
	$e^{x} + e^{2} - 6 = 0$			
	1			
	$\left(e^{\frac{x}{2}} + 3\right)\left(e^{\frac{x}{2}} - 2\right) = 0$			$e^{\frac{x}{2}} = -3 \text{ or } 2$
	or			$e^2 = -3 \text{ or } 2$
	$e^x + e^{\frac{x}{2}} + \frac{1}{4} = \frac{25}{4}$ OE			
	Solves 'their' quadratic	1.1a	M1	$e^{\frac{x}{2}} > 0$ so -3 is not a valid solution
	Must be a quadratic in $e^{\frac{x}{2}}$			$e^2 > 0$ so -3 is not a valid solution
	or			x - In 0
	If squaring is used then it must			$\frac{x}{2} = \ln 2$
	be a quadratic in e^x			$x = 2 \ln 2 = \ln 4$
	or			
	Obtains $x = 1.386$			cln 4
	Explains that $e^{\frac{x}{2}} = -3$ is not	2.4	E1F	$\int_{0}^{\ln 4} (6 - e^{\frac{x}{2}} - e^{x}) dx$
	valid as $e^{\frac{x}{2}} > 0$			J_0
	or			
	If squaring is used they must			$\sum_{n=1}^{\infty} \ln 4$
	clearly check both solutions by			$= \left[6x - 2e^{\frac{x}{2}} - e^{x}\right]_{0}^{\ln 4}$
	substituting and conclude that			, and the second
	ln 9 is not valid			
	OE			$= \left(6 \ln 4 - 2e^{\frac{\ln 4}{2}} - e^{\ln 4}\right) - (-2 - 1)$
	Obtains $x = 2 \ln 2$ or $x = \ln 4$	1.1b	A1	
	Forms any definite integral	1.1a	M1	
	which would contribute to finding the required area			$= 6 \ln 4 - 4 - 4 + 3$
	This could be			
	ln 4			
	$\int_0^{11.4} (6 - e^{\frac{x}{2}} - e^x) dx$			= 6 ln 4 – 5
	or			
	$\int_{0}^{\ln 4} (6 - e^{\frac{x}{2}}) dx$			
	$\int_0^{\infty} (6-e^2) dx$			
	or			
	$\int_{0}^{\ln 4} e^{x} dx$			
	$\int_0^{\infty} \int_0^{\infty} dx$			
	or			
	$\int_{0}^{\ln 4} (e^{x} + e^{\frac{x}{2}} - 6) dx$			
	J_0			
	Follow through 'their' value of x			
	for the upper limit Forms a fully correct definite	3.1a	A1F	-
	integral (or integrals) which	J. 1a	AIF	
	would lead to evaluating the			
	correct area			
	Follow through 'their' incorrect			
	upper limit			

Integrates 'their' expressions involving exponentials fully correctly Follow through their exponential expressions – but must have integrated both e^x and $e^{\frac{x}{2}}$ terms Condone missing/incorrect limits	1.1b	B1F
Substitutes 0 and 'their' upper limits into 'their' integrated expression Must correctly use F (their upper limit) – F (0) for each integral	1.1a	M1
Completes rigorous argument by showing explicit evaluation of exponential terms before obtaining final answer AG This mark can be achieved without achieving the E1 mark	2.1	R1
Total		10