Paper 3: Statistics and Mechanics Mark Scheme

Question	Scheme	Marks	AOs
1(a)	Area = $8 \times 1.5 = 12 \text{ cm}^2$ Frequency = $8 \text{ so } 1 \text{ cm}^2 = \frac{2}{3} \text{ hour (o.e.)}$	M1	3.1a
	Frequency of 12 corresponds to area of 18 so height = $18 \div 2.5 = 7.2$ (cm)	A1	1.1b
	Width = $5 \times 0.5 = 2.5$ (cm)	B1cao	1.1b
		(3)	
(b)	$[\bar{y} =] \frac{205.5}{31} = \text{awrt } 6.63$	B1cao	1.1b
	$\left[\sigma_{y}=\right]\sqrt{\frac{1785.25}{31}-\bar{y}^{2}}=\sqrt{13.644641}=\text{awrt }3.69$		
		M1	1.1a
	allow $[s=] \sqrt{\frac{1785.25 - 31\overline{y}^2}{30}} = \text{awrt } 3.75$	A1	1.1b
		(3)	
(c)	Mean of Heathrow is higher than Hurn and standard deviation smaller suggesting Heathrow is more reliable	M1	2.4
	Hurn is South of Heathrow so does <u>not</u> support his belief	A1	2.2b
		(2)	
(d)	$\overline{x} + \sigma \approx 10.3$ so number of days is e.g. $\frac{(11 - "10.3")}{3} \times 8 \ (+5)$	M1	1.1b
	= 6.86 so 7 days	A1	1.1b
		(2)	
(e)	[$H = \text{no. of hours}$] $P(H > 10.3)$ or $P(Z > 1) = [0.15865]$	M1	3.4
	Predict $31 \times 0.15865 = 4.9 \text{ or } 5 \text{ days}$	A1	1.1b
		(2)	
(f)	(5 or) 4.9 days < (7 or) 6.9 days so model may not be suitable	B1	3.5a
		(1)	
		(13 n	narks)

Ques	tion 1 continued
Note	s:
(a)	
M1:	for clear attempt to relate the area to frequency. Can also award if
	their height ×their width = 18
A1:	for height = 7.2 (cm)
(b)	
M1:	for a correct expression for σ or s , can ft their value for mean
A1:	awrt 3.69 (allow $s = 3.75$)
(c)	
M1:	for a suitable comparison of standard deviations to comment on reliability.
A1:	for stating Hurn is south of Heathrow and a correct conclusion
(d)	
M1:	for a correct expression – ft their $\bar{x} + \sigma \approx 10.3$
A1:	for 7 days but accept 6 (rounding down) following a correct expression
(e)	
M1 :	for a correct probability attempted
A1:	for a correct prediction
(f)	
B1:	for a suitable comparison and a compatible conclusion

Questio	n Scheme	Marks	AOs
2(a)	e.g. It requires extrapolation so will be unreliable (o.e.)	B1	1.2
		(1)	
(b)	e.g. Linear association between w and t	B1	1.2
		(1)	
(c)	$H_0: \rho = 0 H_1: \rho > 0$	B1	2.5
	Critical value 0.5822	M1	1.1a
	Reject H ₀		
	There is evidence that the product moment correlation coefficient is greater than 0	A1	2.2b
		(3)	
(d)	Higher \bar{t} suggests overseas and not Perth…lower wind speed so perhaps not close to the sea so suggest Beijing	B1	2.4
		(1)	
		(6 marks)
Notes:			
(a) B1: fo	r a correct statement (unreliable) with a suitable reason		
(b)	The control (min character) with a carracter reaccin		
` ′	r a correct statement		
(c)			
	r both hypotheses in terms of ρ		
	r selecting a suitable 5% critical value compatible with their H_1		
A1: fc	r a correct conclusion stated		
(d)			
	r suggesting Beijing with some supporting reason based on t or w low Jacksonville with a reason based just on higher \bar{t}		

Question	Scheme	Marks	AOs
Q3(a)	49 50.75		
	P(L > 50.98) = 0.025	Blcao	3.4
	$\therefore \frac{50.98 - \mu}{0.5} = 1.96$	M1	1.1b
	$\therefore \mu = 50$	Alcao	1.1b
	P(49 < L < 50.75)	M1	3.4
	= 0.9104 awrt 0.910	A1ft	1.1b
		(5)	
(b)	$S =$ number of strips that cannot be used so $S \sim B(10, 0.090)$	M1	3.3
	$= P(S \le 3) = 0.991166$ awrt 0.991	A1	1.1b
		(2)	
(c)	$H_0: \mu = 50.1$ $H_1: \mu > 50.1$	B1	2.5
	$\bar{X} \sim N\left(50.1, \frac{0.6^2}{15}\right) \text{ and } \bar{X} > 50.4$	M1	3.3
	$P(\bar{X} > 50.4) = 0.0264$	A1	3.4
	p = 0.0264 > 0.01 or z = 1.936 < 2.3263 and not significant	A1	1.1b
	There is insufficient evidence that the <u>mean length</u> of strips is <u>greater than 50.1</u>	A1	2.2b
		(5)	
		(12	2 marks)

Question 3 continued

Notes:

(a)

1st M1: for standardizing with μ and 0.5 and setting equal to a z value (|z| > 1)

2nd M1: for attempting the correct probability for strips that can be used

2nd A1ft: awrt 0.910 (allow ft of their μ)

(b)

M1: for identifying a suitable binomial distribution

A1: awrt 0.991 (from calculator)

(c)

B1: hypotheses stated correctly

M1: for selecting a correct model (stated or implied)

1st A1: for use of the correct model to find p = awrt 0.0264 (allow z = awrt 1.94)

2nd A1: for a correct calculation, comparison and correct statement

3rd A1: for a correct conclusion in context mentioning "mean length" and 50.1

Question	Scheme	Marks	AOs
4(a)	$P(A' B') = \frac{P(A' \cap B')}{P(B')} \text{ or } \frac{0.33}{0.55}$	M1	3.1a
	$=\frac{3}{5}$ or 0.6	A1	1.1b
		(2)	
(b)	e.g. $P(A) \times P(B) = \frac{7}{20} \times \frac{9}{20} = \frac{63}{400} \neq P(A \cap B) = 0.13 = \frac{52}{400}$ or $P(A' \mid B') = 0.6 \neq P(A') = 0.65$	B1	2.4
		(1)	
(c)		B1	2.5
	B	M1	3.1a
	A C	A1	1.1b
	0.22 (0.13) 0.23 (0.09) 0.11	M1	1.1b
		A1	1.1b
		(5)	
(d)	$P(B \cup C)' = 0.22 + 0.22 \text{ or } 1-[0.56]$ or $1-[0.13+0.23+0.09+0.11]$ o.e.	M1	1.1b
	= 0.44	A1	1.1b
		(2)	

(10 marks)

Notes:

(a)

M1: for a correct ratio of probabilities formula and at least one correct value.

A1: a correct answer

(b) for a fully correct explanation: correct probabilities and correct comparisons.

(c)

B1: for box with B intersecting A and C but C not intersecting A.(Or accept three intersecting circles, but with zeros entered for $A \cap C$ and $A \cap B \cap C$) No box is B0

M1: for method for finding $P(B \cap C)$

A1: for 0.09

M1: for 0.13 and their 0.09 in correct places and method for their 0.23

A1: fully correct

(d)

M1: for a correct expression – ft their probabilities from their Venn diagram.

A1: cao

uestion	Scheme	Marks	AOs
5 (a)	The seeds would be destroyed in the process so they would have none to sell	B1	2.4
		(1)	
(b)	[$S = \text{no. of seeds out of 24 that germinate}, S \sim B(24, 0.55)$]		
	$T = \text{no. of trays with at least 15 germinating.} \ T \sim B(10, p)$	M1	3.3
	$p = P(S \ge 15) = 0.299126$	A1	1.1b
	So $P(T \ge 5) = 0.1487$ awrt <u>0.149</u>	A1	1.1b
		(3)	
(c)	n is large and p close to 0.5	B1	1.2
		(1)	
(d)	X~N(132, 59.4)	B1	3.4
	$P(X \ge 149.5) = P\left(Z \ge \frac{149.5 - 132}{\sqrt{59.4}}\right)$	M1	1.1b
	= 0.01158 awrt <u>0.0116</u>	Alcso	1.1b
		(3)	
(e)	e.g The probability is very small therefore there is evidence that the company's claim is incorrect.	B1	2.2b
		(1)	
		(9	9 mark

(a)

B1: cao

(b)

M1: for selection of an appropriate model for T

 1^{st} A1: for a correct value of the parameter p (accept 0.3 or better)

2nd A1: for awrt 0.149

(c)

B1: both correct conditions

(d)

B1: for correct normal distribution

M1: for correct use of continuity correction

A1: cso

(e)

B1: correct statement