Quest	ion Scheme	Marks	AOs	
5 (a	Multiply out and differentiate wrt <i>t</i>	M1	1.1b	
	$v = 3t^2 - 16t + 20 \Longrightarrow a = 6t - 16$	A1	1.1b	
		(2)		
(b)	Multiply out and integrate wrt t	M1	1.1b	
	$s = \int 3t^2 - 16t + 20dt = t^3 - 8t^2 + 20t(+C)$	A1	1.1b	
	$t = 0, s = 0 \implies C = 0$			
	t = 2, s = 8 - 32 + 40 = 16	AI	1.1b	
		(3)		
(c)	$s = 0 \Longrightarrow t^3 - 8t^2 + 20t = 0$ and $t \neq 0 \Longrightarrow t^2 - 8t + 20 = 0$	M1	2.1	
	Explanation to show that $t^2 - 8t + 20 > 0$ for all <i>t</i> .	M1	2.4	
	So $s = 0$ has no non-zero solutions, so <i>s</i> is never zero again, so never returns to <i>O</i> *	A1*	3.2a	
		(3)		
	(8 marks)			
Notes				
(a) M1·	For multiplying out and differentiating (powers decreasing by 1)			
A1:	For a correct expression for a			
(b)				
M1:	For multiplying out and integrating (powers increasing by 1)			
A1:	For a correct expression for s with or without C			
A1:	For $C = 0$ and correct final answer			
(c) M1.	For equating their s to 0 and producing a quadratic			
M1:	For clear explanation that $t^2 - 8t + 20 > 0$ for all t (e.g. completing the source)	are or ano	ther	
	complete method)	ure or uno		
A1*:	For a correct conclusion in context			

Further Mechanics 2 Mark Scheme (Section B)

Question	Scheme	Marks	AOs
6(a)	$\cos \alpha = \frac{4}{5}$ or $\sin \alpha = \frac{3}{5}$	B1	1.1b
	$r = 4a\sin\alpha$	B1	1.1b
	Resolving vertically	M1	3.1b
	$T_1 \cos \alpha - T_2 \sin \alpha = mg$	A1	1.1b
	Resolving horizontally	M1	3.1b
	$T_1 \sin \alpha + T_2 \cos \alpha = mr\omega^2$	A1	1.1b
	$T_1 \sin \alpha + T_2 \cos \alpha = mr\omega^2$	A1	1.1b
	Solving for either tension	M1	2.1
	$T_1 = \frac{4m}{25}(9a\omega^2 + 5g) *$	A1*	1.1b
	$T_2 = \frac{3m}{25} (16a\omega^2 - 5g) *$	A1*	1.1b
		(10)	
(b)	$\frac{4m}{25}(9a\omega^2 + 5g) < 4mg$	M1	2.1
	$\frac{3m}{25}(16a\omega^2 - 5g) > 0$	M1	2.1
	$\omega > \sqrt{\frac{5g}{16a}}$ or $\omega < \sqrt{\frac{20g}{9a}}$	A1	2.2a
	$S = \frac{2\pi}{\omega}$	M1	1.1b
	$3\pi\sqrt{\frac{a}{5g}} < S < 8\pi\sqrt{\frac{a}{5g}} *$	A1*	1.1b
		(5)	
(c)	String being light implies that the tension is constant in both portions of the string	B1	3.5b
		(1)	
		(16 ו	marks)
Notes:			
(a) B1 • For	correct trig ratio seen		
B1: For	a correct radius expression seen		
M1: For	resolving vertically with correct no. of terms and tensions resolved		
A1: For	a correct equation		
A1A1: For	a correct equation		
M1: For	solving their two equations to find either tension		
A1*: For	the given answer		
A1*: For	the given answer		

Question 6 notes continued:		
(b)		
M1:	For use of $T_1 < 4mg$	
M1:	For using $T_2 > 0$	
A1:	For a correct inequality (either) for ω	
M1:	For use of $S = \frac{2\pi}{\omega}$ with either critical value	
A1*:	For given answer	
(c)		
B1:	For a clear explanation	

7(a) Rel. Mass: 2 5 1 8 B1 1. $y:$ 2 0.5 1.5 \overline{y} B1 1. $x:$ 0.5 2.5 4.5 \overline{x} B1 1. $(2 \times 2) + (5 \times 0.5) + (1 \times 1.5) = 8 \overline{y}$ M1 2. $\overline{y} = 1^*$ A1* 1.1 $(2 \times 0.5) + (5 \times 2.5) + (1 \times 4.5) = 8 \overline{x}$ M1 2. $\overline{y} = 1^*$ A1* 1.1 $(2 \times 0.5) + (5 \times 2.5) + (1 \times 4.5) = 8 \overline{x}$ M1 2. $\overline{x} = 2.25$ A1 1.1 (b) Use of correct strategy to solve the problem by use of 'moments equation' M1 3.1 $(8 \times 2.25) - (2\pi r^2 \times 0.5) = (8 - 2\pi r^2)2.5$ A1ft 1.1 $\overline{y} = \frac{1}{\sqrt{2\pi}} = 0.399$ A1 1.1 $r = \frac{1}{\sqrt{2\pi}} = 0.399$ A1 1.1	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1
x: 0.5 2.5 4.5 \overline{x} B1 1. $(2 \times 2) + (5 \times 0.5) + (1 \times 1.5) = 8\overline{y}$ M1 2. $\overline{y} = 1 *$ A1* 1.1 $(2 \times 0.5) + (5 \times 2.5) + (1 \times 4.5) = 8\overline{x}$ M1 2. $\overline{y} = 2.25$ A1 1.1 (2 × 0.5) + (5 × 2.5) + (1 × 4.5) = 8\overline{x} M1 2. $\overline{x} = 2.25$ A1 1.1 (b) Use of correct strategy to solve the problem by use of 'moments equation' (7) (b) Use of correct strategy to solve the problem by use of 'moments equation' M1 3.1 $(8 \times 2.25) - (2\pi r^2 \times 0.5) = (8 - 2\pi r^2)2.5$ A1ft 1.1 Solving for r M1 1.1 $r = \frac{1}{\sqrt{2\pi}} = 0.399$ A1 1.1 (c) Since \overline{y} for original plate is 1, holes must be symmetrically place about the line $y = 1$ B1 2.	2 .1 1b .1 1b 1b 1b 1b 1b
$\begin{array}{ c c c c c c c c c } \hline (2 \times 2) + (5 \times 0.5) + (1 \times 1.5) = 8 \overline{y} & M1 & 2. \\ \hline \overline{y} = 1 * & A1* & 1.1 \\ \hline (2 \times 0.5) + (5 \times 2.5) + (1 \times 4.5) = 8 \overline{x} & M1 & 2. \\ \hline \overline{x} = 2.25 & A1 & 1.1 \\ \hline \hline & (7) & \hline \\ \hline & Use of correct strategy to solve the problem by use of & M1 & 3.1 \\ \hline & (8 \times 2.25) - (2\pi r^2 \times 0.5) = (8 - 2\pi r^2)2.5 & A1ft & 1.1 \\ \hline & (8 \times 2.25) - (2\pi r^2 \times 0.5) = (8 - 2\pi r^2)2.5 & A1ft & 1.1 \\ \hline & (8 \times 2.25) - (2\pi r^2 \times 0.5) = (8 - 2\pi r^2)2.5 & A1ft & 1.1 \\ \hline & (1 + 1) & 1 + 1 \\ \hline & (2 + 1) & 1 + 1 \\ \hline & (2 + 1) & (2 + 1) \\ \hline & (2 + 1) & (2 + 1) \\ \hline & (2 + 1) & (2 + 1) \\ \hline & (2 + 1) & (2 + 1) \\ \hline & (2 + 1) & (2 + 1) \\ \hline & (2 + 1) & (2 + 1) \\ \hline & (2 + 1) & (2 + 1) \\ \hline & (3 + 1) & (3 + 1) \\ \hline & (4 + 1) \\ \hline & (2 + 1) & (4 + 1) \\ \hline & (2 + 1) & (4 + 1) \\ \hline & (2 + 1) & (4 + 1) \\ \hline & (2 + 1) & (4 + 1) \\ \hline & (2 + 1) & (4 + 1) \\ \hline & (2 + 1) & (4 + 1) \\ \hline & (2 + 1) & (4 + 1) \\ \hline & (2 + 1) & (4 + 1) \\ \hline & (2 + 1) & (4 + 1) \\ \hline & (2 + 1) & (4 + 1) \\ \hline & (2 + 1) & (4 + 1) \\ \hline & (3 + 1) & (4 + 1) \\ \hline & (4 + 1) $.1 1b 1b 1b 1b 1b
$\overline{y} = 1^*$ A1* 1.1 $(2 \times 0.5) + (5 \times 2.5) + (1 \times 4.5) = 8 \overline{x}$ M1 2. $\overline{x} = 2.25$ A1 1.1 (b) Use of correct strategy to solve the problem by use of 'moments equation' M1 3.1 $(8 \times 2.25) - (2\pi r^2 \times 0.5) = (8 - 2\pi r^2)2.5$ A1ft 1.1 Solving for r M1 1.1 $r = \frac{1}{\sqrt{2\pi}} = 0.399$ A1 1.1 (c) Since \overline{y} for original plate is 1, holes must be symmetrically placed about the ling $y = 1$ B1 2.1	1b .1 1b 1b 1b 1b
(2 × 0.5) + (5 × 2.5) + (1 × 4.5) = 8 \overline{x} M1 2. \overline{x} = 2.25 A1 1.1 (b) Use of correct strategy to solve the problem by use of 'moments equation' (7) (b) Use of correct strategy to solve the problem by use of 'moments equation' M1 3.1 (8 × 2.25) - ($2\pi r^2 × 0.5$) = ($8 - 2\pi r^2$)2.5 A1 ft 1.1 Solving for r M1 1.1 (8 × 2.25) - ($2\pi r^2 × 0.5$) = ($8 - 2\pi r^2$)2.5 A1 ft 1.1 (8 × 2.25) - ($2\pi r^2 × 0.5$) = ($8 - 2\pi r^2$)2.5 A1 ft 1.1 (c) Since \overline{y} for original plate is 1, holes must be symmetrically placed about the line $y = 1$ B1 2.4	.1 1b 1b 1b 1b
$\overline{x} = 2.25$ A11.1(b)Use of correct strategy to solve the problem by use of 'moments equation'M13.1 $(8 \times 2.25) - (2\pi r^2 \times 0.5) = (8 - 2\pi r^2)2.5$ A1ft1.1Solving for rM11.1 $r = \frac{1}{\sqrt{2\pi}} = 0.399$ A11.1(c)Since \overline{y} for original plate is 1, holes must be symmetrically placed about the line $y = 1$ B12.4	1b 1b 1b 1b
(b)Use of correct strategy to solve the problem by use of 'moments equation'(7)(b)Use of correct strategy to solve the problem by use of 'moments equation'M13.1 $(8 \times 2.25) - (2\pi r^2 \times 0.5) = (8 - 2\pi r^2)2.5$ A1ft1.1Solving for rM11.1 $r = \frac{1}{\sqrt{2\pi}} = 0.399$ A11.1(4)(4)(4)(c)Since \overline{y} for original plate is 1, holes must be symmetrically placed about the line $y = 1$ B1	1b 1b 1b 1b
(b)Use of correct strategy to solve the problem by use of 'moments equation'M13.1 $(8 \times 2.25) - (2\pi r^2 \times 0.5) = (8 - 2\pi r^2)2.5$ A1ft1.1Solving for rM11.1 $r = \frac{1}{\sqrt{2\pi}} = 0.399$ A11.1(c)Since \overline{y} for original plate is 1, holes must be symmetrically placed about the line $y = 1$ B12.4	1b 1b 1b 1b
$(8 \times 2.25) - (2\pi r^2 \times 0.5) = (8 - 2\pi r^2)2.5$ A1ft I.1 Solving for r $r = \frac{1}{\sqrt{2\pi}} = 0.399$ A1 I.1 (c) Since \overline{y} for original plate is 1, holes must be symmetrically placed about the line $y = 1$ B1 2.4	1b 1b 1b
Solving for rM11.1 $r = \frac{1}{\sqrt{2\pi}} = 0.399$ A11.1(c)Since \overline{y} for original plate is 1, holes must be symmetrically placed about the line $y = 1$ B1	1b 1b
$r = \frac{1}{\sqrt{2\pi}} = 0.399$ A1 1.1 (4) (5) Since \overline{y} for original plate is 1, holes must be symmetrically B1 2.4	1b
(c)Since \overline{y} for original plate is 1, holes must be symmetrically(4)B12.4	
(c) Since \overline{y} for original plate is 1, holes must be symmetrically B1 2.4	
placed about the line $y - 1$.4
a = 1.5 B1 2.2	2a
(2)	
(d) Use of tan from an appropriate triangle M1 1.1	1a
$\tan \alpha = \frac{2}{1.5} = \frac{4}{3}$ A1ft 1.1	1b
$\alpha = 53.1^{\circ}$ A1 1.1	1b
(3)	
(16 mark	(S)
B1: For correct relative masses	
B1: For correct y values	
M1: For a moments equation, correct no. of terms, condone sign errors	
A1*: For a correct given answer (1)	
M1: For a moments equation, correct no. of terms	
A1: FOL 2.23	
M1: For a moments equation, correct no. of terms, condone sign errors	
A1ft: For a correct equation, follow through on their \overline{x}	
M1: For solving for r A1: For 0.399 or 0.40	

Question 7 notes continued:		
For consideration of symmetry about $y = 1$		
For $a = 1.5$		
For use of tan from an appropriate triangle		
For a correct equation, follow through on their <i>a</i>		
For a correct angle		