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AS Further Mathematics Unit 1: Further Pure Mathematics A 
General instructions for marking GCE Mathematics 

 
1. The mark scheme should be applied precisely and no departure made from it.  Marks 

should be awarded directly as indicated and no further subdivision made.   
 
2. Marking Abbreviations 
 The following may be used in marking schemes or in the marking of scripts to 

indicate reasons for the marks awarded. 
  
 cao  = correct answer only 
 MR = misread 
 PA = premature approximation 
 bod = benefit of doubt 
 oe = or equivalent 
 si  =  seen or implied 
 ISW  =  ignore subsequent working 

F.T.  =  follow through (  indicates correct working following an error and    
indicates a further error has been made) 
 

Anything given in brackets in the marking scheme is expected but, not required, to 
gain credit.  

 
3. Premature Approximation 
 A candidate who approximates prematurely and then proceeds correctly to a final 

answer loses 1 mark as directed by the Principal Examiner. 
 
4. Misreads 
 When the data of a question is misread in such a way as not to alter the aim or 

difficulty of a question, follow through the working and allot marks for the candidates' 
answers as on the scheme using the new data.   

 This is only applicable if a wrong value, is used consistently throughout a solution; if 
the correct value appears anywhere, the solution is not classed as MR (but may, of 
course, still earn other marks). 

 
5.        Marking codes  

 ‘M' marks are awarded for any correct method applied to appropriate working, 
even though a numerical error may be involved.  Once earned they cannot be lost. 

 ‘m’ marks are dependant method marks. They are only given if the relevant 
previous ‘M’ mark has been earned. 

 ‘A' marks are given for a numerically correct stage, for a correct result or for an 
answer lying within a specified range.  They are only given if the relevant M/m 
mark has been earned either explicitly or by inference from the correct answer. 

 'B' marks are independent of method and are usually awarded for an accurate 
result or statement. 

 ‘S’ marks are awarded for strategy 
 ‘E’ marks are awarded for explanation 
 ‘U’ marks are awarded for units 
 ‘P’ marks are awarded for plotting points  
 ‘C’ marks are awarded for drawing curves 
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AS Further Mathematics Unit 1: Further Pure Mathematics A 
Solutions and Mark Scheme 

Qu. 
No. Solution Mark AO Notes 

1. When n = 1, 4n +2 = 6 which is divisible by 6 
so the proposition is true for n = 1. 
Assume the proposition to be true for n = k so 
that 4k + 2 is divisible by 6 and equals 6N 
Consider (for n = k + 1) 
4k + 1 + 2 = 4  4k + 2 
   = 4  (6N – 2) + 2 
   = 24N – 6  
This is divisible by 6 so true for k  true for k 
+ 1. Since true for n = 1, the result is proved 
by induction. 
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FT from line above 

 

(b) 
|z| = 70.1

3
26

  (1.699673171) 
1tan ( 5) 1.3734...

arg( ) 1.3734 π 1.77  (1.768191887)z
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   

 

z = 1.70(cos1.77 + isin1.77) 
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Qu. 
No. Solution Mark AO Notes 
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4.(a) )(2)( 2222  
 
= 42 – 214 
= –12  
A cubic equation either has 3 real roots or 1 
real root.  Since the sum of squares is 
negative, the 3 roots cannot all be real so there 
is just 1 real root 
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(b) A second root is 1 – 3i,  
since complex roots occur in conjugate pairs. 
The third root is 2 
since the sum of the 2 complex roots is 2 and 
the sum of the 3 roots is 4,  
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Qu. 
No. Solution Mark AO Notes 

5. Putting z = x + iy, 
 |x – 3 + iy| = 2|x + i(y + 1)| 

 2222 )1(4)3(  yxyx  
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This is the equation of a circle 
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Qu. 
No. Solution Mark AO Notes 

6.(a) 
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(b) Fixed points satisfy 
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The second equation is inconsistent so there 
are no fixed points. 
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Qu. 
No. Solution Mark AO Notes 

7.(a) Putting z = x + iy and w = u + iv,    
u + iv = (x + iy)(x +1+ iy) 
v = imaginary part = y(x + 1) + xy 
= y(1 + 2x) 
u = real part = x(x + 1) – y2 
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(b) 2)1()1(  xxxu  
= – x – 1 
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= )12(  uu  
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8.(a)(i) AB = (2 3 ) ( 2 3 )    i j k i j k  
       = 2 i j k  

M1 
A1 

 

AO1 
AO1 

 

 

     (ii) Equation of line is 
r 2 3 ( 2 )λ     i j k i j k  
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(b)(i) The line cuts the plane where 
1 + λ + 3(2 + λ) – 2(3 – 2λ) = 5 
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(ii) Direction of normal = (1,3, – 2) 
 
 
If θ denotes the angle between L and the 
normal, 

1 3 2 11 2
1 3 2 11 2

  
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| ( , , ) || ( , , ) |
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8  

θ  = 29.2(0593…)o  
Angle between L and plane = 60.8o. 
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