Question	Scheme	Marks	AOs
1(a)	$P(A > 3) = \frac{2}{5}$	B1	1.1b
	$\left(\frac{2}{5}\right)^3 = \frac{8}{125}$	M1 A1	1.1a 1.1b
		(3)	
(b)	$f(y) = \frac{3y^2}{125}$ $E(Y) = \int_0^5 \frac{3y^3}{125} dy$	M1	2.1
	$E(Y) = \int_0^5 \frac{3y^3}{125} dy$ $= \left[\frac{3y^4}{500}\right]_0^5 \qquad \left[=\frac{15}{4}\right]$	M1	1.1b
	$Var(Y) = \int_{0}^{5} \left(\frac{3y^{4}}{125}\right) dy - \left(\frac{15}{4}\right)^{2}$	M1	1.1b
	= 0.9375*	A1*cso	1.1b
		(4)	
(c)	Mode = 5	B1	1.2
	$\int_{0}^{y} \int_{0}^{y} \int_{0$	B1	2.4
		(2)	
(d)	From a sketch or mode > mean therefore it has negative skew	Blft	2.4
(e)	$(21)^3$ (3)	(1)	
	$\frac{\left(2k\right)^3}{125} - \frac{k^3}{125} = 0.189$	M1	3.1a
	$\frac{7k^3}{125} = 0.189$	A1	1.1b
	<i>k</i> = 1.5	A1	1.1b
		(3)	
		(13 m	arks)

Paper 4E:	Further	Statistics	2	Mark Scheme
-----------	---------	------------	---	--------------------

Quest	tion 1 notes:
(a)	
B1:	$\frac{2}{5}$ o.e. may be implied by a correct answer
M1:	$\left(\text{"their}\left(\frac{2}{5}\right) \right)^3$ may be implied by a correct answer
A1:	$\frac{8}{125}$ o.e.
(b) M1: M1:	Realising that firstly need to find pdf $f(y)$ and attempt to differentiate $F(y)$ Continuing the argument with an attempt to integrate $y \times$ "their $f(y)$ " $y^n \rightarrow y^{n+1}$
M1:	Integrating $y^2 \times$ "their f(y)" - ["their E(Y)"] ² $y^n \rightarrow y^{n+1}$
A1*:	Complete correct solution no errors
(c) B1:	5 only
B1:	Explain their reason by either an accurate sketch or $\frac{df(y)}{dy} > 0$ therefore an increasing
	function o.e.
(d) B1ft:	Explaining the reason for their answer. Follow through their part(b) or mean from(d) and mode from(c). A correct sketch of "their $f(y)$ " – may be seen anywhere in question or ft their mean and mode plus a correct conclusion
NB:	Watch for gaming. A student who writes both negative skew with a reason and positive skew with a reason. Please send these to your Team Leader
(e) M1:	Attempting to translate the problem into an equation using 2k and k. Allow if the brackets are missing e.g. $\frac{2k^3}{125} - \frac{k^3}{125}$. No need for the 0.189
A1: A1:	A correct equation in any form A correct answer only

Questio	n Scheme	Marks	AOs				
2(a)	$H_{0}: \rho = 0, H_{1}: \rho > 0$	B1	2.5				
	Critical value at 1% level is 0.8929	B1	1.1b				
	$r_s < 0.8929$ so not significant evidence to reject H ₀	M1	2.1				
	 The researcher's claim is not correct (at 1% level) or insufficient evidence for researcher's claim or there is insufficient evidence that water gets deeper further from inner bank or no (positive) correlation between depth of water and distance from inner bank 	A1ft	2.2b				
		(4)					
(b)(i)	The ranks will remain the same therefore there will be no change to the spearman's rank correlation coefficient	B1	2.4				
(ii)	Spearman's rank correlation coefficient will increase since	B1	2.2a				
	The ranks are the same for both distance and depth therefore $d = 0$ however, <i>n</i> has increased or the new position follows the pattern that large <i>b</i> is associated with large <i>s</i> and so <i>r_s</i> will increase	B1	2.4				
		(3)					
(c)	The mean of the tied ranks is given to each	B1	2.4				
	then use PMCC	B1	2.4				
		(2)					
		(9 n	narks)				
B1: av M1: D A1ft: D (b)(i)	oth hypotheses correct written using the notation ρ wrt 0.893 rawing a correct inference using their answer to part(a) and their CV rawing a correct inference in context using their answer to part(a) and the						
c (b)(ii)	Stating no change and an explanation including ranks remain unchanged o.e. and no change o.e.						
B1: E	nterpreted the outcome of adding a point as increased oe Explaining why. Need to mention the ranks are the same for both oe and <i>n</i> has increased be						
	Explaining that the mean of the values for the tied ranks is given to both values Explaining that the PMCC must be used						

Quest	on Scheme	Marks	AOs				
3 (a)	95% CI for μ uses t value of 2.064	B1	3.3				
	$\frac{\hat{\sigma}}{\sqrt{25}} \times "2.064" = \frac{1}{2} (2.232 - 1.128) \underline{\text{or}}$ $\frac{1}{2} (2.232 + 1.128) + "2.064" \times \frac{\hat{\sigma}}{\sqrt{25}} = 2.232 \text{ (oe)}$	M1	2.1				
	$\hat{\sigma} = \frac{2.76}{"2.064"}$ or 1.3372	M1	1.1b				
	$\hat{\sigma}^2 = 1.788[=1.79 (3sf)] *$	A1*cso	1.1b				
		(4)					
(b)	$12.401, < \frac{24 \times 1.79}{\sigma^2} <, 39.364$	B1	1.1b				
	0	M1	1.1a				
	$\underline{1.09} < \sigma^2 < \underline{3.46}$	A1	1.1b				
		(3)					
		(7 n	narks)				
Notes: (a) B1:	Realising that the <i>t</i> -distribution must be used as a model and finding the c awrt 2.06 $\hat{\sigma}$		e				
M1:	Using the correct formula with a <i>t</i> -value, $\frac{\hat{\sigma}}{\sqrt{25}} \times "t$ value" = $\frac{1}{2}(2.232 - 1.1)$ $\frac{1}{2}(2.232 + 1.128) + "t$ value" $\times \frac{\hat{\sigma}}{\sqrt{25}} = 2.232$ or	28) or					
	$\frac{1}{2}(2.232+1.128) - "t \text{ value"} \times \frac{\hat{\sigma}}{\sqrt{25}} = 1.128$						
M1:							
A1cso*	A correct solution only using awrt 1.79						
(b) B1:	awrt 12.4 or 39.4 May be implied by a correct confidence interval						
M1:	$\frac{24 \times 1.79}{\sigma^2}$ May be implied by a correct confidence interval						
A1:	awrt 1.09 and awrt 3.46						

Quest	ion Scheme	Marks	AOs				
4(a) H ₀ : $\sigma_G^2 = \sigma_B^2$, H ₁ : $\sigma_G^2 \neq \sigma_B^2$,	B1	2.5				
	$s_B^2 = \frac{1}{6}(56130 - 7 \times 88.9^2) = \frac{807.53}{6} = 134.6$	M1 A1	2.1 1.1b				
	$s_G^2 = \frac{1}{7}(55746 - 8 \times 83.1^2) = \frac{501.12}{7} = 71.58$	A1	1.1b				
	$\frac{s_B^2}{s_G^2} = 1.880$ Critical value $F_{6,7} = 3.87$		3.4				
			1.1b				
	Not significant, variances can be treated as the same	A1 ft	2.2b				
		(7)					
(b)	H ₀ : $\mu_B = \mu_G$, H ₁ : $\mu_B > \mu_G$	B1	2.5				
	Pooled estimate of variance $s^2 = \frac{6 \times 1346 + 7 \times 71.58}{13} = 100.6653$	M1	3.1b				
	Test statistic $t = \frac{88.9 - 83.1}{12}$ = awrt 1 12	M1	1.1b				
	Test statistic $t = \frac{88.9 - 83.1}{s\sqrt{\frac{1}{7} + \frac{1}{8}}} = \text{awrt } 1.12$	A1	1.1b				
	Critical value $t_{13}(5\%) = 1.771$	B1	1.1b				
	Insufficient evidence to support mother's claim	A1 ft	2.2b				
		(6)					
		(13 n	narks)				
Notes	<u> </u>						
(a) B1:	Both hypotheses correct using the notation σ^2 . Allow σ rather than σ^2						
M1:	Using a correct Method for either s_B^2 or s_G^2 May be implied by a correct ve	alue					
A1:	awrt 135	uiue					
A1:	awrt 71.6						
M1:	Using the F-distribution as the model e.g. $\frac{s_B^2}{s_G^2}$						
B1:	awrt 3.87						
A1ft:	Drawing a correct inference following through their CV and value for $\frac{s_B^2}{s_C^2}$						
(b)							
B1:	Both hypotheses correct using the notation μ						
M1:	For realising the need to find the pooled estimate for the test require from a correct interpretation of the question						
M1:	Correct method for test statistic $t = \frac{88.9 - 83.1}{\text{"their } s'' \sqrt{\frac{1}{7} + \frac{1}{8}}}$ May be implied by a correct						
	awrt 1.12						
A1: B1:	awrt 1.12						
Alft:	awrt 1.77 Drawing a correct inference following through their CV and test statistic						

Ques	tion	Scheme	Marks	AOs		
5(:	(a) Let $X = L - 4S$ then $E(X) = 19.6 - 4 \times 4.8$			2.3		
		= 0.4	A1	1.1b		
		$Var(X) = Var(L) + 4^{2} Var(S) = 0.6^{2} + 16 \times 0.3^{2}$	M1	2.1		
		= 1.8	A1	1.1b		
]	$P(X > 0) = [P(Z > \frac{0 - 0.4}{\sqrt{1.8}} = -0.298)]$	M1	2.1		
		= 0.617202 awrt <u>0.617</u>	A1	1.1b		
			(6)			
(b)	$T = S_1 + S_2 + S_3 + S_4$ (May be implied by 0.36)	M1	3.3		
		$T \sim N(19.2, 0.36)$ $E(T) = 19.2$	B1	1.1b		
		$Var(T) = 0.36$ or 0.6^2	A1	1.1b		
			(3)			
(c)	Let $Y = L - T$ $E(Y) = E(L) - E(T) = [0.4]$	M1	3.3		
		Var(Y) = Var(L) + Var(T) = [0.72]	M1	1.1b		
]	Require $P(-0.2 < Y < 0.2)$	M1	3.1a		
		= 0.16708 awrt <u>0.167</u>	A1	1.1b		
			(4)			
			(13 n	narks)		
Notes	s:					
(a) M1:	Salact	ing and using an appropriate model i.e. $\pm (L - 4S)$. May be implied	by 0.4			
A1:	0.4 oe		Uy 0.4			
M1:	For re	alising the need to use $Var(L) + 4^2Var(S)$. Allow use of 0.6 for $Var(L)$ nd/or 0.3 for $Var(S)$ instead of 0.3 ² may be implied by 1.8) instead o	f		
A1:	1.8 on					
M1:	For re	alising P(X > 0) is required and an attempt to find it e.g. $\frac{0 - 0.4}{\sqrt{\text{"their Var}}}$	$\overline{\overline{X}}$ but d	lo not		
A 1 -	allow a negative Var(X)					
A1: (b)	awrt 0	/.01/				
M1:	Selecting and using an appropriate model ie $S_1 + S_2 + S_3 + S_4$: may be implied by 0.36					
B1: A1:	19.2 only 0.36					
(c)	0.00					
M1:	Setting up and using the model $Y = L - T$. May be implied by $E(Y) = E(L) - E(T)$					
M1: M1: A1:	Using $Var(Y) = Var(L) + Var(T)$ Dealing with the modulus and realising they need to find P($-0.2 < Y < 0.2$) awrt 0.167					

Question		Sc	cheme		Marks	AOs
6(a)	$b = \frac{S_{xm}}{S_{xx}} = -0.0$	0277576]			M1	3.3
	$[a = \overline{m} -$	$b\overline{x} = 1.278 +$	0.0277576× 8.5	5 = 1.5139]		
		m = 1.5139	9 - 0.02775x		A1	1.1b
					(2)	
(b)		RSS = 0.12	$756 - \frac{(-2.29)^2}{82.5}$		M1	1.1b
			.06399*		A1*	1.1b
					(2)	
(c)	r	m	m = a + bx			
	$\begin{array}{ c c } x \\ \hline 4 \end{array}$	<i>m</i> 1.50	m - a + bx 1.4029	ε +0.0971		
	5	1.30	1.4029	-0.1752		
	6	1.40	1.3732	+0.0526		
	7	1.40	1.3474	+0.0320 +0.0804		
	8	1.40	1.2919	- 0.0619	M1	3.4
	9	1.23	1.2919	+0.0359		
	10	1.20	1.2364	-0.0364	A1	1.1b
	10	1.15	1.2086	- 0.0586		
	12	1.15	1.1808	+0.0692		
	13	1.15	1.1531	-0.0031		
		1.10	1.1001	0.0021		
<					(2)	
(d)	The point (5, 1.2) i	s an outlier			B1ft	2.2b
					(1)	
(e)(i)	It is a valid piece of It does not follow to contain an error ma	he pattern acc	or cording to the res		B1	2.4
(ii)	$a = \overline{m} - b\overline{x} = 1.28667 + 0.03765 \times 8.88889 = 1.6213$				M1	3.3
	m = 1.6213 - 0.03765x			A1	1.1b	
(iii)	m = 1.6213 - 0.037					
	= 1.056 or awrt 1.06				B1ft	3.4
(iv)	The model is only given range so pro			ed to those in the	B1	3.5b
					(5)	
					(12 r	narks)

Quest	tion 6 notes:
6(a)	
M1:	Realising the need to use $b = \frac{S_{xm}}{S_{xx}}$ and $a = \overline{m} - b\overline{x}$
A1:	m = awrt (1.51) - (awrt (0.0278)) x. Award M1A1 for correct equation
(b)	
M1:	Using $S_{mm} - \frac{\left(S_{xm}\right)^2}{S_{xx}}$
A1*:	awrt 0.064
(c) M1: A1:	Using the model in part (a) i.e. $m - ("1.5139" - "0.02775"x)$ implied by a correct value All correct. Award M1A1 for a list of correct residuals
(d) B1:	Inferring from the residuals that the outlier is (5, 1.2) ft their residuals.
(e)(i) B1:	Explaining why the outlier should be removed or not.
(ii) M1: A1:	Removing the outlier and refining the model by finding a new regression line. m = (awrt 1.62) - (awrt 0.0377)x
(iii) B1ft:	using their model in $e(i)$ with $x = 15$. awrt 1.06 or ft their $e(ii)$
(iv) B1:	Realising the limitations of the model by stating it is <u>not reliable</u> and giving the reason why i.e. extrapolation/out of range o.e.

Questi	on Scheme	Marks	AOs				
7(a)	$S_{xx} = \sum (10s)^2 - \frac{(\sum 10s)^2}{10}$	M1	2.1				
	$2658.9 = 100 \sum (s)^2 - \frac{100 (\sum s)^2}{10}$	M1	1.1b				
	$2658.9 = 100 S_{ss}$						
	$S_{ss} = 26.589 *$	A1*cso (3)	1.1b				
(b)	$64 = \sum_{i=1}^{10} 10(d_i - 9)$	(3) M1	3.1a				
	$64 = \sum_{i=1}^{10} 10(d_i - 9)$ $64 = 10\sum_{i=1}^{10} d_i - 900$						
	$\sum_{1}^{10} d_i = 96.4$	A1	1.1b				
	$S_{dd} = 1081.74 - \frac{("96.4")^2}{10}$	M1	1.1b				
	= 152.444						
	r = 0.935	A1ft	1.1b				
(c)	Linear correlation is significant but scatter diagram suggests a non- linear relationship between the level of serum magnesium, and the level of the disease protein	(4) B1	3.5a				
		(1)					
		(8 n	narks)				
Notes:							
M1:	Attempting to use $S_{xx} = \sum x^2 - \frac{(\sum x)^2}{10}$ with $x = 10s$ Substituting in 2658.9 and dealing with the 10 correctly cso A complete solution with no errors leading to 26.589 only						
(b) M1:	Realising that either $64 = \sum_{i=1}^{10} 10(d_i - 9)$ or $64 = 10\sum_{i=1}^{10} d_i - 900$ o.e. must be used. May be						
A1:	implied by seeing 96.4 96.4 only						
M1:	Attempting to use $S_{dd} = \sum d^2 - \frac{\left(\sum d\right)^2}{10}$ may be implied by 0.935						
Alft:	awrt 0.935 ft "their 96.4"						
(c) B1:	A correct comment comparing their value of r and the scatter diagram in co	ontext					