Section A: STATISTICS

Qu 1	Scheme						Marks	AO						
(a)	С	0	1	2	3	4	5	6	7	8		B1	1.2	
	P(C=c)	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$		B1ft	1.2	
											1	(2)		
(b)	$P(C < 4) = \frac{4}{9}$	(acce	pt 0.44	14 or 1	better))						B1	3.4	
												(1)		
(c)	Probability lov	ver tha	n expe	ected s	sugges	sts mo	del is	<u>not</u> go	ood			B1ft	3.5a	
							(1)	2.5						
(d)	e.g. Cloud cover will vary from month to month and place to place So e.g. use a non-uniform distribution						B1 (1)	3.5c						
	50 e.g. use a	non-ui		uistii	oution	L						(5 mark)	(S)	
							Note	5						
(a)	1 st B1 for a co	orrect s	et of v	alues	for c.	Allow	$\left\{\frac{1}{8}, \frac{1}{8}\right\}$	$\frac{2}{3}, \dots, \frac{8}{8}$						
	2 nd B1ft for c									vith d	iscrete uni	form distri	b'n	
	Maybe as a p													
	clearly define						,							
(b)	B1 for usir	ng corr	ect mo	del to	get $\frac{4}{9}$	• (o.e	.)							
SC	Sample space	{1,	, 8 } If	score	d B0B	1 in (a	a) for	this al	low P	(C < 4)	$= \frac{3}{8}$ to so	ore B1 in	(b)	
(c)	B1ft for comment that states that the model proposed is or is not a good one based on their model in part (a) and their probability in (b)													
	(b) - 0.315 >		-			-			·	accura	te" etc			
	(b) - 0.315 ≤			-										
	No prob in (b										ind rejects	the model		
	No prob in (b													
	Igno	re any	comm	ients a	bout 1	locatio	on or v	veathe	er patte	erns.				
(d)	B1 for a set	ensible	e refine	ement	consi	derino	varia	tions i	n mor	nth or	location			
()	Just sa						,							
	Context & "n	on-un	iform'	'Allo	w mei	ntion of								
												ased on frequencies		
	Context & "b Just refined n											mai		
												r less cloud	d cover	
	e.g. higher probabilities for more cloud cover <u>or</u> lower probabilities for less cloud cover Continuous model Any model that is based on a continuous distribution. e.g. normal is B0													

Qu 2	Scheme	Marks	AO		
(a)	$H_0: \rho = 0$ $H_1: \rho < 0$	B1	2.5		
	Critical value: -0.6215 (Allow any cv in range $0.5 < cv < 0.75$)	M1	1.1a		
	r < -0.6215 so significant result and there is evidence of a negative	A1	2.2b		
	correlation between w and t	(3)			
(b)	e.g. As temperature increases people spend more time on the beach and less		2.4		
	time shopping (o.e.)	B1	2.4		
	Cince wis close to 1 it is consistent with the successfier	(1) D1	2.4		
(c)	Since r is close to -1 , it is consistent with the suggestion	B1 (1)	2.4		
(d)	t will be the explanatory variable since sales are likely to depend on the	B1	2.4		
	temperature				
(e)	Every degree rise in temperature leads to a drop in weekly earnings of £171	(1) B1	3.4		
	Every degree rise in temperature reads to a drop in weekly earnings of 2171	(1)	5.4		
		(7 mar	ks)		
(a)	Notes B1 for both hypotheses in terms of ρ				
(b)	 M1 for the critical value: sight of ± 0.6215 or any cv such that 0.5 < cv < 0.75 A1 must reject H₀ on basis of comparing - 0.915 with - 0.6215 (if - 0.915 < 0.6215 is seen then A0 but may use r o.e. which is fine) and mention "negative", "correlation/relationship" and at least "w" and "t" B1 for a suitable reason to explain negative correlation using the context given. e.g. "As temperature drops people are more likely to go shopping (than to the beach)" 				
(c)	 e.g. "As temperature increases people will be outside rather than in shops" A mere description in context of negative correlation is B0 SO e.g. "As temperature increases people don't want to go shopping/buy clothes" is B0 e.g. "Less clothes needed as temp increases" is B0 				
	B1 for a suitable reason e.g. "strong"/"significant"/"near perfect" "correlation", $ r $ close to 1 and saying it is consistent with the suggestion. Allow "yes" followed by the reason.				
(d)	 B1 For identifying t and giving a suitable reason. Need idea that "w depends on t" or "w responds to t" or "t affects w" (o.e.) Allow t (temperature) affects the other variable etc Just saying "t is the independent variable" or "t explains change in w" is B0 N. B. Suggesting causation is B0 e.g. "t causes w to decrease" 				
(e)	B1 for a description that conveys the idea of rate per degree Celsius. Must have 171, condone missing "£" sign.				

Qu 3	Scheme	Marks	AO				
(a)	The probability of a dart hitting the target is constant (from child to child and for each throw by each child)The throws of each of the darts are independent(o.e.)	B1 B1	1.2 1.2				
(b)	$[P(H \ge 4) = 1 - P(H \le 3) = 1 - 0.9872 = 0.012795 =] \qquad \text{awrt } \underline{0.0128}$	(2) B1	1.1b				
(c)	$P(F = 5) = 0.9^4 \times 0.1, = 0.06561$ = awrt <u>0.0656</u>	(1) M1, A1	3.4 1.1b				
(d)	n 1 2 10 P(F=n) 0.01 0.01 + α 0.01+9 α	(2) M1	3.1b				
	Sum of probs = 1 $\Rightarrow \frac{10}{2} [2 \times 0.01 + 9\alpha] = 1$	M1A1	3.1a 1.1b				
	[i.e. $5(0.02 + 9\alpha) = 1$ or $0.1 + 45\alpha = 1$] so $\alpha = 0.02$	A1 (4)	1.1b				
(e)	P(F = 5 Thomas' model) = 0.09	B1ft (1)	3.4				
(f)	<u>Peta's</u> model assumes the <u>probability</u> of hitting target is <u>constant</u> (o.e.) and <u>Thomas</u> ' model assumes this <u>probability increases</u> with each attempt(o.e.)	B1 (1)	3.5a				
		(1) (11 mark	(s)				
	Notes						
(a)	$\begin{array}{ll} 1^{st} B1 & \text{for stating that the probability (or possibility or chance) is constant (or fixed or same)} \\ 2^{nd} B1 & \text{for stating that throws are independent ["trials" are independent is B0]} \end{array}$						
(b)	B1 for awrt 0.0128 (found on calculator)						
(c)	M1 for a probability expression of the form $(1-p)^4 \times p$ where $0 \le p \le 1$ A1 for awrt 0.0656						
SC	Allow M1A0 for answer only of 0.066						
(d)	1 st M1 for setting up the distribution of <i>F</i> with at least 3 correct values of <i>n</i> and $P(F = n)$ in terms of α . (Can be implied by 2 nd M1 or 1 st A1) 2 nd M1 for use of sum of probs = 1 and clear summation or use of arithmetic series formula (allow 1 error or missing term). (Can be implied by 1 st A1) 1 st A1 for a correct equation for α 2 nd A1 for $\alpha = 0.02$ (must be exact and come from correct working)						
(e)	B1ft for value resulting from $0.01 + 4 \times$ "their α " (provided α and the answer are probs) Beware If their answer is the same as their (c) (or a rounded version of their (c)) score B0						
(f) ALT	B1 for a suitable comment about the <u>probability</u> of hitting the target Allow idea that Peta's model suggests the dart may never hit the target but Thomas' says that it will hit at least once (in the first 10 throws).						

Qu 4	Scheme	Marks	AO			
(a)	Convenience or opportunity [sampling]	B1	1.2			
(b)	Quota [sampling] e.g. Take 4 people every 10 minutes	(1) B1 B1	1.1a 1.1b			
(c)	Census	(2) B1	1.2			
(d)	[58-26=] <u>32</u> (min)	(1) B1	1.1b			
(e)	$\mu = \frac{4133}{2.5} = 43.505263$ awrt <u>43.5</u> (min)	(1) B1	1.1b			
	$\mu = \frac{4133}{95} = 43.505263$ awrt <u>43.5</u> (min) $\sigma_x = \sqrt{\frac{202294}{95} - \mu^2} = \sqrt{236.7026}$					
	$\sigma_x = \sqrt{\frac{-1}{95}} - \mu^2 = \sqrt{236.7026}$	M1	1.1b			
	= 15.385 awrt <u>15.4</u> (min)	A1 (3)	1.1b			
(f)	There are outliers in the data (or data is skew) which will affect mean and sd Therefore use median and IQR	B1 dB1 (2)	2.4 2.4			
(g)	Value of 20, LQ at 26 and outliers will not change	B1	1.1b			
	<u>or</u> state that median and upper quartile are the values that <u>do</u> change <u>More values now below 40 than above</u> so Q_2 or Q_3 will change and be lower	M1	2.1			
	Both Q_2 and Q_3 will be lower	A1	2.4			
		(3) (13 mark	(32			
	Notes		15)			
(b)	 1st B1 for quota (sampling) mentioned ("Stratified" or "systematic" or "random" are B0B0) 2nd B1 for a description of how such a system might work, requires suitable strata or categories e.g. time slots, departments, gender, age groups, distance travelled etc Suggestion of randomness is B0 					
(e)	B1 for a correct mean (awrt 43.5)					
	M1 for a correct expression for the sd (including $$)ft their mean A1 for awrt 15.4 (Allow <i>s</i> = 15.4667 awrt 15.5)					
(f)	 1st B1 for acknowledging <u>outliers</u> or <u>skewness</u> are a problem for <u>mean and sd</u> "extreme values"/"anomalies" OK May be implied by saying median and IQR not affected by We need to see mention of "outliers", "skewness" and the problem so "data is skewed so use median and IQR" is B0 unless mention that they are not affected by extreme values <u>or</u> mean and standard deviation can be "inflated" by the positive skew etc 2nd dB1 dep on 1st B1 for therefore choosing <u>median and IQR</u> 					
(g)	B1 for identifying 2 of these 3 groups of unchanged values or stating only Q_2 and Q_3 change M1 for <u>explaining</u> that median or UQ should be lower. E.g. the 2 values have moved to below 40 (or 58) and therefore more than 50% below 40 or (more than 75% below 58) <u>or</u> an argument to show that the other 3 values are the same. (o.e.) Allow arrows on box plot provided statement in words about increased % below 40 or 58 etc A1 for stating median <u>and</u> UQ are both lower with clear evidence of M1 scored					
	[If lots of values on 40 then median might not change but, since two values <u>do</u> change then UQ would change. If this meant that 92 became an outlier then we would have a new value for upper whisker and an extra outlier so effectively 3 values are altered. So median changes]					

Qu 5	Scheme	Marks	AO			
(a)	P(L > 16) = 0.69146 awrt 0.691	B1	1.1b			
(1-)	$\mathbf{P}(L \in 20)$	(1)				
(b)	$P(L > 20 L > 16) = \frac{P(L > 20)}{P(L > 16)}$	M1	3.1b			
		A 1 G	1.1b			
	$=\frac{0.308537}{(a)}$ or $\frac{1-(a)}{(a)}$, =0.44621	A1ft, A1	1.1b			
	For calc to work require $(0.44621)^4 = 0.03964$ awrt <u>0.0396</u>	dM1	2.1			
	awit <u>0.0050</u>	A1	1.1b			
(c)	Require: $[P(L > 4)]^2 \times [P(L > 20 L > 16)]^2$	(5) M1	1.1a			
	$= (0.99976)^2 \times ("0.44621")^2$	A1ft	1.1b			
	= 0.19901 awrt <u>0.199</u> (*)	A1cso*	1.1b			
		(3)				
(d)	$H_0: \mu = 18$ $H_1: \mu > 18$	B1	2.5			
	$\overline{L} \sim N\left(18, \left(\frac{4}{\sqrt{20}}\right)^2\right)$	M1	3.3			
	$P(\bar{L} > 19.2) = P(Z > 1.3416) = 0.089856$	A1	3.4			
	(0.0899 > 5%) or $(19.2 < 19.5)$ or $1.34 < 1.6449$ so not significant	Al	1.1b			
	Insufficient evidence to support Alice's claim (or belief)	A1	3.5a			
		(5)				
	Notes	(14 mar	KS)			
(a)	B1 for evaluating probability using their calculator (awrt 0.691) Accept 0.69	915				
(b)	1 st M1 for a first step of identifying a suitable conditional probability (either form) 1 st A1ft for a ratio of probabilities with numerator = awrt 0.309 or 1 – (a) and denom = their (a) 2 nd A1 for awrt 0.446 (o.e.) Accept 0.4465 (from $\frac{0.3085}{0.691}$ = 0.44645)					
	NB $\frac{P(16 < L < 20)}{P(L > 16)} = 0.5538$ scores M1A1A1 when they do $1 - 0.5538 = 0.4462$					
	2^{nd} M1 (dep on 1 st M1) for 2 nd correct step i.e. (their 0.446) ⁴ or X~B(4, "0.446") and P(X=4) 3 rd A1 for awrt 0.0396					
(c)	1st M1for a correct approach to solving the problem (May be implied by A1ft)1st A1ftfor $P(L > 4) = awrt 0.9998$ used and ft their 0.44621 in correct expression					
	If use $P(L > 20) = 0.3085.$ as 0.446 in (b) then M1 for $(0.3085.)^2 \times [P(L > 4)]$		s above			
*	2 nd A1cso for 0.199 or better with clear evidence of M1 [NB (0.4662) ² = 0.199 is M0A0A0] Must see M1 scored by correct expression in symbols or values (M1A1ft)					
(d)	B1 for both hypotheses in terms of μ .					
	M1 for selecting a suitable model. Sight of <u>normal</u> , <u>mean</u> 18, <u>sd</u> $\frac{4}{\sqrt{20}}$ (o.e.) o	r variance	= 0.8			
	1 st A1 for using the model correctly. Allow awrt 0.0899 or 0.09 from correct p					
ALT	CR $(\overline{L}) > 19.471$ (accept awrt 19.5) <u>or</u> CV of 1.6449 (or better: calc 1.6448536)					
	2 nd A1 for correct non-contextual conclusion. Wrong comparison or contradictions A		,			
	Error giving 2 nd A0 implies 3 rd A0 but just a correct contextual conclusion can score A1A1 3 rd A1 dep on M1 and 1 st A1 for a correct contextual conclusion mentioning <u>Alice's claim</u> / <u>belief</u> or there is insufficient evidence that the mean <u>lifetime</u> is more than 18 hours					