Question	Scheme	Marks	AOs	
6	Integrate a w.r.t. time	M1	1.1a	
	$\mathbf{v} = \frac{5t^2}{2}\mathbf{i} - 10t^{\frac{3}{2}}\mathbf{j} + \mathbf{C} \text{(allow omission of } \mathbf{C}\text{)}$	A1	1.1b	
	$\mathbf{v} = \frac{5t^2}{2}\mathbf{i} - 10t^{\frac{3}{2}}\mathbf{j} + 20\mathbf{i}$	A1	1.1b	
	When $t = 4$, v = 60 i - 80 j	M1	1.1b	
	Attempt to find magnitude: $\sqrt{(60^2 + 80^2)}$	M1	3.1a	
	Speed = 100 m s^{-1}	A1 ft	1.1b	
			(6 marks)	
Notes:				
1 st M1: for integrating a w.r.t. time (powers of <i>t</i> increasing by 1)				
1 st A1: for a correct v expression without C				
2 nd A1: for a correct v expression including C				

2nd M1: for putting t = 4 into their v expression **3**rd M1: for finding magnitude of their v **3**rd A1: ft for 100 m s⁻¹, follow through on an incorrect v

Question	Scheme	Marks	AOs	
7(a)	$R = mg\cos\alpha$	B1	3.1b	
	Resolve parallel to the plane	M1	3.1b	
	$-F - mg\sin\alpha = -0.8mg$	A1	1.1b	
	$F = \mu R$	M1	1.2	
	Produce an equation in μ only and solve for μ	M1	2.2a	
	$\mu = \frac{1}{4}$	A1	1.1b	
		(6)		
(b)	Compare $\mu mg \cos \alpha$ with $mg \sin \alpha$	M1	3.1b	
	Deduce an appropriate conclusion	A1 ft	2.2a	
		(2)		
(8 m			(8 marks)	
Notes:				
(a)				
B1: for <i>R</i>	$= mg\cos\alpha$			
1 st M1: for resolving parallel to the plane				
1 st A1: for a correct equation 2nd M1: for use of $E = \mu P$				
2^{-1} W1: for eliminating E and R to give a value for μ				
2^{nd} A1: for $\mu = \frac{1}{4}$				
(b)				
M1: comparing size of limiting friction with weight component down the plane				
A1ft: for an appropriate conclusion from their values				

Ques	tion	Scheme	Marks	AOs
8(:	a)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$: $(10.5\mathbf{i} - 0.9\mathbf{j}) = 0.6\mathbf{j} + 15\mathbf{a}$	M1	3.1b
		$\mathbf{a} = (0.7\mathbf{i} - 0.1\mathbf{j}) \text{ m s}^{-2}$ Given answer	A1	1.1b
			(2)	
(b)	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$	M1	3.1b
		$\mathbf{r} = 0.6\mathbf{j} t + \frac{1}{2} (0.7\mathbf{i} - 0.1\mathbf{j}) t^2$	A1	1.1b
			(2)	
(C	:)	Equating the i and j components of r	M1	3.1b
		$\frac{1}{2} \leftarrow 0.7 \ t^2 = 0.6 \ t - \frac{1}{2} \leftarrow 0.1 \ t^2$	Alft	1.1b
		t = 1.5	A1	1.1b
			(3)	
(d)		Use of $v = u + at$: $v = 0.6j + (0.7i - 0.1j) t$	M1	3.1b
		Equating the i and j components of v	M1	3.1b
		t = 0.75	A1 ft	1.1b
			(3)	
			(1	0 marks)
Notes	5:			
(a) M1:	for us	$e of \mathbf{v} = \mathbf{u} + \mathbf{a}t$		
A1:	for giv	ven answer correctly obtained		
(b)				
M1:	for use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$			
A1:	for a correct expression for r in terms of t			
(c) M1.				
Alft:	for equating the I and J components of their r			
A1:	for $t = 1.5$			
(d)				
M1:	for use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ for a general t			
M1:	for equating the i and j components of their v for $i = 0.75$ and some the last $i = 1$			
Alft:	for $t = 0.75$, or a correct follow through answer from an incorrect equation			

Question	Scheme	Marks	AOs
9(a)	Take moments about A (or any other complete method to produce an equation in S , W and α only)	M1	3.3
	$Wa\cos\alpha + 7W2a\cos\alpha = S2a\sin\alpha$	A1 A1	1.1b 1.1b
	Use of $\tan \alpha = \frac{5}{2}$ to obtain <i>S</i>	M1	2.1
	S = 3W *	A1*	2.2a
		(5)	
(b)	R = 8W	B1	3.4
	$F = \frac{1}{4} R (= 2W)$	M1	3.4
	$P_{\text{MAX}} = 3W + F$ or $P_{\text{MIN}} = 3W - F$	M1	3.4
	$P_{\text{MAX}} = 5W$ or $P_{\text{MIN}} = W$	Al	1.1b
	$W \le P \le 5W$	Al	2.5
		(5)	
(c)	M(A) shows that the reaction on the ladder at B is unchanged	M1	2.4
	also <i>R</i> increases (resolving vertically)	M1	2.4
	which increases max F available	M1	2.4
		(3)	
		(13 marks)

Question 9 continued Notes: **(a)** 1st M1: for producing an equation in S, W and α only 1st A1: for an equation that is correct, or which has one error or omission 2nd A1: for a fully correct equation **2nd M1:** for use of $\tan \alpha = \frac{5}{2}$ to obtain S in terms of W only 3^{rd} A1*: for given answer S = 3W correctly obtained **(b)** for R = 8W**B1**: 1st M1: for use of $F = \frac{1}{4} R$ **2nd M1:** for either P = (3W + their F) or P = (3W - their F)1st A1: for a correct max or min value for a correct range for P 2^{nd} A1: for a correct range for P (c) 1st M1: for showing, by taking moments about A, that the reaction at B is unchanged by the builder's assistant standing on the bottom of the ladder

 2^{nd} M1: for showing, by resolving vertically, that *R* increases as a result of the builder's assistant standing on the bottom of the ladder

 3^{rd} M1: for concluding that this increases the limiting friction at A

Question	Scheme	Marks	AOs
10(a)	Using the model and horizontal motion: $s = ut$	M1	3.4
	$36 = Ut\cos\alpha$	A1	1.1b
	Using the model and vertical motion: $s = ut + \frac{1}{2}at^2$	M1	3.4
	$-18 = Ut\sin\alpha - \frac{1}{2}gt^2$	A1	1.1b
	Correct strategy for solving the problem by setting up two equations in t and U and solving for U	M1	3.1b
	<i>U</i> = 15	A1	1.1b
		(6)	
(b)	Using the model and horizontal motion: $U\cos\alpha$ (12)	B1	3.4
	Using the model and vertical motion: $v^2 = (U\sin\alpha)^2 + 2(-10)(-7.2)$	M1	3.4
	<i>v</i> = 15	A1	1.1b
	Correct strategy for solving the problem by finding the horizontal and vertical components of velocity and combining using Pythagoras: Speed = $\sqrt{(12^2 + 15^2)}$	M1	3.1b
	$\sqrt{369} = 19 \text{ m s}^{-1}$ (2sf)	A1 ft	1.1b
		(5)	
(c)	Possible improvement (see below in notes)	B1	3.5c
	Possible improvement (see below in notes)	B1	3.5c
		(2)	
(13 m			13 marks)

Question 10 continued

Notes:

1st M1: for use of s = ut horizontally

1st A1: for a correct equation

2nd M1: for use of
$$s = ut + \frac{1}{2}at^2$$
 vertically

2nd A1: for a correct equation

3rd M1: for correct strategy (need both equations)

2nd A1: for U = 15

(b)

B1: for $U\cos\alpha$ used as horizontal velocity component

 1^{st} M1: for attempt to find vertical component

1st A1: for 15

2nd M1: for correct strategy (need both components)

2nd A1ft: for 19 m s⁻¹ (2sf) following through on incorrect component(s)

(c)

B1, B1: for any two of

e.g. Include air resistance in the model of the motion

e.g. Use a more accurate value for g in the model of the motion

e.g. Include wind effects in the model of the motion

e.g. Include the dimensions of the stone in the model of the motion