Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
√and x	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
۸	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
WWW	Without wrong working
AG	Answer given
awrt	Anything which rounds to
awrt BC DR	Anything which rounds to By Calculator This question included the instruction: In this question you must show detailed reasoning.

2. Subject-specific Marking Instructions for AS Level Further Mathematics A

- Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

 If you are in any doubt whatsoever you should contact your Team Leader.
- c The following types of marks are available.

М

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

 Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
- Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.
- g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
- h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some papers. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

Question	1 Answer	Marks	AO	Guid	dance
1	12	M1	1.1	Use of the limit in the given	OR BC
	Set $u_{n+1} = u_n = \alpha \Rightarrow \alpha = \frac{12}{1+\alpha}$			reccurence relation	M1 "2" ENTER and iterating with 12
					/(1 + ANS)
	$\alpha = 3$ and/or $\alpha = -4$	A1	1.1	BC Solving for α	$A1 \rightarrow \alpha = 3$
	Since $\alpha > 0$ (all terms are positive), $\alpha = 3$	E1	2.2a	Explicitly rejecting the negative	
				solution or justifying why there is	
				only one positive solution	
		[3]			
2	$Area = (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a}) $	M1	1.2	Use of formula with attempted	
		A1	1 1	substitution	
	$ \left \begin{array}{c} 7 \\ -4 \end{array} \right $	AI	1.1	Two correct vectors	
	$ = \begin{bmatrix} 7 \\ 0 \\ 3 \end{bmatrix} \times \begin{bmatrix} -4 \\ 4 \\ 3 \end{bmatrix} $				
	$ = \begin{vmatrix} -12 \\ -33 \\ 28 \end{vmatrix} $	M1	1.1a	Attempt at vector product soi	BC
	= -33	A1FT	1.1	For vector product FT their vectors	OR using formula
					M1A1FT for
					$\begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - b_1a_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} = \begin{pmatrix} -12 \\ -33 \\ 28 \end{pmatrix}$
					$\begin{vmatrix} a_3b_1 - b_1a_3 \\ \vdots \end{vmatrix} = \begin{vmatrix} -33 \\ 20 \end{vmatrix}$
					$(a_1b_2 - a_2b_1)$ (28)
	$=\sqrt{2017}$ (= 44.9)	B1FT	1.1	FT their vector product	
		[5]			
3	$bG = \{be, ba, ba^2, b^2, bab, b^2a\}$	M1	1.1a	Attempt to pre-multiply by <i>b</i>	
		A1	1.1	All six elements, unsimplified	
	= { b , ba , ??, e , ??, a } using $b^2 = e$	A1	1.1	Noting that four elements are	
		3.54		known	
	So ba^2 is either a^2 or ab	M1	2.1	Use of the Latin-Square property	
	But $ba^2 = a^2$ only if $b = e$, which it isn't	E1	2.2a		
	so $ba^2 = ab$	[5]			
		[5]			

	Questi	on	Answer				,		Mark	s AO	Guidance
4	(i)		= 100ab + 60(a+b) + 36 $= 10(10ab + 6(a+b) + 3) + 6$							1.1	Correctly multiplied out given expression
										3.1a	Correctly identified "tens" term
			and n =	=10 <i>ab</i>	+6(a+	-b)+3	is odd	since it	is E1	2.4	Proper explanation that <i>n</i> is odd
			even +	even +	- odd						
									[3]		
4	(ii)			16	36	56	76	96	M1	1.1	For most entries correct (≤ 2
			16	56	76	96	16	36	A1	1.1	errors) For all entries correct
			36	76	96	16	36	56		1.1	Tot un entries correct
			56	96	16	36	56	76			
			76	16	36	56	76	96			
			96	36	56	76	96	16			
									[2]		
4	(iii)						ments i	n the ta	ble B1	2.5	Or from (i)
			(Associativity given)								
			76 is the identity						B1	1.2	
			Inverse-pairs 16, 36 and 56, 96 noted				ed	B1	1.1		
									[3]		
4	(iv)		16, 36,	56, 96	are all	possib	le gene	rators	B1	2.2a	
									[1]		

	Questi	on	Answer	Marks	AO	Gu	iidance
5	(i)	(a)	$f_x = 3x^2 - 2y$	B1	1.1		
				[1]			
5	(i)	(b)	$f_v = 3y^2 - 2x$	B1	1.1		
				[1]			
5	(i)	(c)	$3x^2 - 2y = 0$ and $3y^2 - 2x = 0$	M1	1.1a		OR M1 $3x^2 - 2y = 3y^2 - 2x$
			Substituting e.g. $y = \frac{3}{2}x^2$ into $y^2 = \frac{2}{3}x$	M1	3.1a	Eliminating one variable	$\Rightarrow (x-y)\{3(x+y)+2\}=0$
			$27x^4 - 8x = 0$	M1	1.1	Solving their quartic	$\Rightarrow x = y \text{ or } x + y = -\frac{2}{3}$
			$x = 0 \text{ or } x = \frac{2}{3}$	A1	1.1		M1 Eliminating 2 nd case since both
			so S has a stationary point when $x = 0$ as	A1	1.1		x, y are positive ($y = \frac{3}{2}x^2$ &
			required				$x = \frac{2}{3}y^2$) or from
			$\Rightarrow (x, y, z) = (0, 0, 1)$				$3x^2 - 2(-\frac{2}{3} - x) = 0$
							$\Rightarrow 9x^2 + 6x + 4 = 0 \text{ with } \Delta < 0$
							M1 $y = x \Rightarrow x^2 = \frac{2}{3}x$, etc. as
							before
				[6]			
5	(i)	(d)	$\left(\frac{2}{3}, \frac{2}{3}, \frac{19}{27}\right)$	B1	1.1		
				[1]			
5	(ii)		When $x = a$, $f_y = 3y^2 - 2a = 0$	M 1	3.1a		
			$y = \pm \sqrt{\frac{3}{2}a}$, so one solution implies $a = 0$	E1	2.2a		
			$z = f(a, y) = y^3 - 2ay + 1 + a^3$				
			Therefore the equation of the section is	4.4	2.2		
			$z = y^3 + 1$	A1	3.2a		
				[3]			

Question		ion	Answer	Marks	AO	Guid	lance
6	(i)		R given by $12\sqrt{1.049} = 1.004$	B1	2.3		
			The amount owed at end of next month is	E 1	3.3		
			$R \times$ amount owed at end of previous month				
			10.11	F.4			
			-M is his monthly repayment	E1 [3]	1.1		
6	(ii)		$L_{n+1} - RL_n = -M$ has Complementary	B1	1.2	(R=1.004)	
			Solution $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n=1}$			(N=1.004)	
			$L_n = AR^n$				
			For Particular Solution, try $L_n = b$ and	M1	1.1a		
			substitute it into the recurrence relation to get	1711	1.14		
			$b(R-1) = M \Rightarrow b = 250M$	A1	1.1		
			General Solution is thus $L_n = AR^n + 250M$	B1FT	1.1	FT provided CS has 1 arbitrary	
			General Solution is thus $L_n - AK + 250M$			constant and PS has none	
			$L_0 = P \Longrightarrow$	M1	1.1	Use of known term to evaluate the	
			A = P - 250M			constant	
			⇒ Solution is	A1	1.1		
			$L_n = (P - 250M) \times 1.004^n + 250M$				
				[6]			
6	(iii)		$L_n = 0$ when $n = 120$ and $P = 100 000$ gives	M1	3.1b	Substituting $L_n = 0$ and a	
						numerical value of <i>n</i> into their	
						solution	
			$(100000 - 250M) \times 1.004^{120} + 250M = 0$	A1FT	1.1	Correct, unsimplified FT their <i>n</i>	
			$\Rightarrow M = 1051$ (to nearest £)	A1	3.4	ri uleli n	85909.87239
			7/1 1001 (10 1100100000)	[3]			65,67,67,23,

	Questi	on	Answer	Marks	AO	Guid	dance
6	(iv)		(*) becomes $L_{n+1} = INT(1.004L_n + 1) - M$	M1	3.5c	Expression involving L_n inside the INT function	Accept equivalent "floor" or "ceiling" function expressions.
			$L_{n+1} = \text{INT} \left(1.004 L_n + 1\right) - M$	A1	3.3	Correct	coming function expressions.
						Also $L_{n+1} = INT(1.004L_n - M + 1)$	
						or $L_{n+1} = INT(1.004 L_n) - M + 1$	
				[1]			
7	(i)	(a)	Let $17 \mid M$, then $M = 17m$	M1	1.1a	Attempt either "if" or "only if"	OR M1 Consider $5N + M = 51a$
			$\Rightarrow a-5b=17m$				(or any $xN + yM = 17z$)
			N = 10a + b = 10(a - 5b) + 51b	A1	1.1	Simple case	M1 If $17 \mid N$, say $N = 17n$,
			= 17m + 51b = 17(m + 3b)				Then $5N = 35n$
			so 17 N				
			Let $17 \mid N$, then $N = 17n$	M1	2.1	Attempt other direction	A1 so $M = 51a - 5N = 17(3a - 5n)$
			\Rightarrow 10a + b = 17n				and 17 M
			10M = 10a - 50b = (10a + b) - 51b	A1	2.4	Allow without hcf(10, 17)	A1 If $17 \mid M$, say $M = 17m$,
			=17n-51b=17(n-3b)			considered	then $5N = 51a - M = 17(3a - m)$
			$hcf(10,17) = 1 \text{ so } 17 \mid M$	E1	2.2a	hcf(10, 17) oe considered	E1 hcf(5, 17)=1 we have $17 N$
						and conclusion	therefore $17 \mid N$ if and only if
			therefore $17 \mid N$ if and only if $17 \mid M$				17 M
				[5]			
7	(i)	(b)	$4097 \rightarrow a = 409, b = 7$	M1	1.1	Starting this process (first stage	
			$\rightarrow M = 409 - 35 = 374$			correctly attempted)	
			$374 \rightarrow a = 37, b = 4 \rightarrow M = 37 - 20 = 17$	A1	2.2a		
			Then $17 17 \Rightarrow 17 4097$				Including all working
				[2]			

	Questi	on	Answer	Marks	AO	Guid	lance
7	(ii)	(a)	$1001_n = n^3 + 1$	M1	1.1	Express as a polynomial in <i>n</i>	
			$\equiv (n+1)(n^2 - n + 1)$ For $n \ge 2$ we have $n+1 \ge 3$	M1	2.1	Factorise and establish one factor as non-trivial	
			and $n^2 - n + 1 \ge 3$, so neither factor is 1 So 1001_n is composite	E1	2.4	Establish the other factor as non-trivial and conclude	
				[3]			
7	(ii)	(b)	$10001_n = n^4 + 1$ $n = 2 4 6 8$	B1	1.1		
			$n^4 + 1 = 17 \ 257 \ 1297 \ 4097 = 17k$ 17 is a factor of 4097 (from (i)(b)) so $n = 8$	M1	1.1	Method for searching for possible candidates	
			provides a counter-example	E1	2.1	NB $10^4 + 1 = 73 \times 137$, $12^4 + 1 = 89 \times 233$, $14^4 + 1 = 41 \times 937$, $16^4 + 1$ is prime, etc., so other counter-examples are available	($k = 241$ not required) OR Working mod 17, E1 $36^4 + 1 = 2^4 + 1 = 17 = 0$ so $n = 36$ is also a counter-example (in fact, all $n = 34k + 2$, of course)
				[3]			