Paper 2 Option A

Questio	n Scheme	Marks	AOs
1(a)	$\sec x - \tan x = \frac{1}{\frac{1 - t^2}{1 + t^2}} - \frac{2t}{1 - t^2}$	M1	2.1
	$= \frac{1+t^2}{1-t^2} - \frac{2t}{1-t^2} = \frac{1-2t+t^2}{1-t^2}$	M1	1.1b
	$=\frac{(1-t)^2}{(1-t)(1+t)} = \frac{1-t}{1+t} *$	A1*	2.1
		(3)	
(b)	$\frac{1-\sin x}{1+\sin x} = \frac{1-\frac{2t}{1+t^2}}{1+\frac{2t}{1+t^2}}$	M1	1.1a
	$= \frac{1+t^2-2t}{1+t^2+2t}$	M1	1.1b
	$= \frac{(1-t)^2}{(1+t)^2} = \left(\frac{1-t}{1+t}\right)^2 = (\sec x - \tan x)^2 *$	A1*	2.1
		(3)	
		(6 n	narks)
Notes:			
in M1: Se A1*: Fa	11: Uses sec $x = \frac{1}{\cos x}$ and the <i>t</i> -substitutions for both $\cos x$ and $\tan x$ to obtain an expression in terms of <i>t</i> 11: Sorts out the sec <i>x</i> term, and puts over a common denominator of $1 - t^2$		
M1: M A1*: Fa	M1:Uses the <i>t</i> -substitution for sin x in both numerator and denominatorM1:Multiples through by $1 + t^2$ in numerator and denominator		

Further Pure Mathematics 1 Mark Scheme (Section A)

Ques	tion Scheme	Marks	AOs
2	£300 purchased one hour after opening $\Rightarrow V_0 = 3$ and $t_0 = 1$;	B1	3.3
	half an hour after purchase $\Rightarrow t_2 = 1.5$, so step <i>h</i> required is 0.25		5.5
	$t_0 = 1, V_0 = 3, \left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_0 \approx \frac{3^2 - 1}{1^2 + 3} = 2$	M1	3.4
	$V_1 \approx V_0 + h \left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_0 = 3 + 0.25 \times 2 = \dots$	M1	1.1b
	= 3.5	Alft	1.1b
	$\left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_{1} \approx \frac{3.5^{2} - 1.25}{1.25^{2} + 1.25 \times 3.5} \left(=\frac{176}{95}\right)$	M1	1.1b
	$V_2 \approx V_1 + h \left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_1 = 3.5 + 0.25 \times \frac{176}{95} = 3.963, \text{ so } \pounds 396$	A1	3.2a
	(nearest £)		
		(6)	narks)
Notes	:	(01	11 KS)
B1:	Identifies the correct initial conditions and requirement for <i>h</i>		
M1:	Uses the model to evaluate $\frac{dV}{dt}$ at t_0 , using their t_0 and V_0		
M1:	Applies the approximation formula with their values		
A1ft:	3.5 or exact equivalent. Follow through their step value (AV)		
M1:	Attempt to find $\left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_1$ with their 3.5		
A1:	Applies the approximation and interprets the result to give £396		

Ques	tion	Scheme	Marks	AOs
3		$\frac{1}{x} < \frac{x}{x+2}$		
	$\frac{(x+2)}{x(x)}$	$\frac{x^2}{x+2} < 0$ or $x(x+2)^2 - x^3(x+2) < 0$	M1	2.1
	$\frac{x^2 - x}{x(x + x)}$	$\frac{x-2}{x-2} > 0 \Rightarrow \frac{(x-2)(x+1)}{x(x+2)} > 0 \text{ or } x(x+2)(2-x)(x+1) < 0$	M1	1.1b
	At lea	st two correct critical values from $-2, -1, 0, 2$	Al	1.1b
	All fo	ur correct critical values $-2, -1, 0, 2$	Al	1.1b
	${x \in I}$	$\mathbb{R}: x < -2 \} \cup \{ x \in \mathbb{R}: -1 < x < 0 \} \cup \{ x \in \mathbb{R}: x > 2 \}$	M1 A1	2.2a 2.5
			(6)	
			(6 n	narks)
Notes	;:			
M1:	Gathers terr	ns on one side and puts over common denominator, or multipl	by $x^2(x+$	$2)^{2}$
	and then gather terms on one side			
M1:	Factorise numerator or find roots of numerator or factorise resulting in equation into 4		1	
A 1.	factors			
A1: A1:		At least 2 correct critical values found		
M1:	Exactly 4 correct critical values Deduces that the 2 "outsides" and the "middle interval" are required. May be by sketch		۰h	
1711.	Deduces that the 2 "outsides" and the "middle interval" are required. May be by sketch, number line or any other means		, iii,	
A1:	Exactly 3 correct intervals, accept equivalent set notations, but must be given as a set			

e.g. accept $\mathbb{R} - ([-2, -1] \cup [0, 2])$ or $\{x \in \mathbb{R} : x < -2 \text{ or } -1 < x < 0 \text{ or } x > 2\}$

Question	Scheme	Marks	AOs
4(a)	Identifies glued face is triangle <i>ABC</i> and attempts to find the area, e.g. evidences by use of $\frac{1}{2} \mathbf{AB} \times \mathbf{AC} $	M1	3.1a
	$\frac{1}{2} \mathbf{A}\mathbf{B} \times \mathbf{A}\mathbf{C} = \frac{1}{2} (-2\mathbf{i} + 3\mathbf{j} + \mathbf{k}) \times (-\mathbf{i} + \mathbf{j} + 2\mathbf{k}) $	M1	1.1b
	$=\frac{1}{2} 5\mathbf{i}+3\mathbf{j}+\mathbf{k} $	M1	1.1b
	$=\frac{1}{2}\sqrt{35}(\mathrm{m}^2)$	A1	1.1b
		(4)	
	Alternative	·	
	Identifies glued face is triangle <i>ABC</i> and attempts to find the area, e.g. evidences by use of $\frac{1}{2}\sqrt{ \mathbf{AB} ^2 \mathbf{AC} ^2 - (\mathbf{AB.AC})^2}$	M1	3.1a
	$ \mathbf{AB} ^2 = 4 + 9 + 1 = 14, \mathbf{AC} ^2 = 1 + 1 + 4 = 6$ and $\mathbf{AB.AC} = 2 + 3 + 2 = 7$	M1	1.1b
	So area of glue is = $\frac{1}{2}\sqrt{('14')('6') - ('7')^2}$	M1	1.1b
	$=\frac{1}{2}\sqrt{35} (m^2)$	A1	1.1b
		(4)	
(b)	Volume of parallelepiped taken up by concrete is e.g. $\frac{1}{6}$ (OC.(OA × OB))	M1	3.1a
	$= \frac{1}{6}(\mathbf{i} + \mathbf{j} + 2\mathbf{k}).(2\mathbf{i} \times (3\mathbf{j} + \mathbf{k}))$	M1	1.1b
	$=\frac{10}{6}=\frac{5}{3}$	A1	1.1b
	Volume of parallelepiped is 6 × volume of tetrahedron (= 10), so volume of glass is difference between these, viz. $10 - \frac{5}{3} =$	M1	3.1a
	Volume of glass = $\frac{25}{3}$ (m ³)	A1	1.1b
		(5)	

Questio	on Scheme	Marks	AOs
	4(b) Alternative		
	$-\mathbf{j}+3\mathbf{k}$ is perpendicular to both $\mathbf{OA} = 2\mathbf{i}$ and $\mathbf{OB} = 3\mathbf{j}+\mathbf{k}$	M1	3.1a
	Area $AOB = \frac{1}{2} \times \mathbf{OA} \times \mathbf{OB} = \frac{1}{2} \times 2 \times \sqrt{10} = \sqrt{10}$	A1	1.1b
	$\mathbf{i} + \mathbf{j} + 2\mathbf{k} - p(-\mathbf{j} + 3\mathbf{k}) = \mu(2\mathbf{i}) + \lambda(3\mathbf{j} + \mathbf{k}) \Longrightarrow p = \frac{1}{2}$		
	and so height of tetrahedron is	M1	3.1a
	$h = \frac{1}{2} \left -\mathbf{j} + \mathbf{3k} \right = \frac{1}{2} \sqrt{10}$		
	Volume of glass is $V = 5 \times$ Volume of tetrahedron = $5 \times \frac{1}{3} \sqrt{10} \times \frac{1}{2} \sqrt{10}$	M1	1.1b
	$=\frac{25}{3}\left(\mathrm{m}^{3}\right)$	A1	1.1b
		(5)	
(c)	 The glued surfaces may distort the shapes / reduce the volume of concrete Measurements in m may not be accurate The surface of the concrete tetrahedron may not be smooth Pockets of air may form when the concrete is being poured 	B1	3.2b
		(1)	
		(10	marks
-	n 4 notes:		
(a) M1: S A M1: A M1: F	ABC Any correct method for the triangle area is fine		-
A1: C	orrect procedure for the vector product with at least 1 correct term $\frac{1}{2}\sqrt{2}$	$\overline{35}$ or exac	et
	quivalent		
M1: F s M1: N	Alternative Finds two appropriate sides and attempts the scalar product and magnitudes of two of the sides May use different sides to those shown Correct full method to find the area of the triangle using their two sides		
1	$\frac{1}{2}\sqrt{35}$ or exact equivalent		

Ques	Question 4 notes continued:	
(b) M1: M1:	Attempts volume of concrete by finding volume of tetrahedron with appropriate method Uses the formula with correct set of vectors substituted (may not be the ones shown) and vector product attempted	
A1: M1:	Correct value for the volume of concrete Attempt to find total volume of glass by multiplying their volume of concrete by 6 and subtracting their volume of concrete. May restart to find the volume of parallelepiped 25	
A1:	$\frac{25}{3}$ only, ignore reference to units	
(b) M1:	Alternative Notes (or works out using scalar products) that $-j+3k$ is a vector perpendicular to both OA = 2i and $OB = 3j+k$	
A1:	Finds (using that OA and OB are perpendicular), area of $AOB = \sqrt{10}$	
M1:	Solves $\mathbf{i} + \mathbf{j} + 2\mathbf{k} - p(-\mathbf{j} + 3\mathbf{k}) = \mu(2\mathbf{i}) + \lambda(3\mathbf{j} + \mathbf{k})$ to get the height of the tetrahedron $\left[(\mu = \lambda =) p = \frac{1}{2}, \text{ so } h = \frac{1}{2} \left -\mathbf{j} + 3\mathbf{k} \right = \frac{1}{2} \sqrt{10} \right]$	
M1:	Identifies the correct area as 5 times the volume of the tetrahedron (may be done as in main scheme via the difference)	
A1:	$\frac{25}{3}$ only, ignore reference to units	
(c) B1:	Any acceptable reason in context	

Question	Scheme	Marks	AOs
5(a)	$y^2 = (8p)^2 = 64p^2$ and $16x = 16(4p^2) = 64p^2$ $\Rightarrow P(4p^2, 8p)$ is a general point on C	B1	2.2a
		(1)	
(b)	$y^2 = 16x$ gives $a = 4$, or $2y\frac{dy}{dx} = 16$ so $\frac{dy}{dx} = \frac{8}{y}$	M1	2.2a
	$l: y - 8p = \left(\frac{8}{8p}\right)\left(x - 4p^2\right)$	M1	1.1b
	leading to $py = x + 4p^2 *$	A1*	2.1
		(3)	
(c)	$B\left(-4,\frac{10}{3}\right)$ into $l \Rightarrow \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1	1.1b
	$p = \frac{3}{2}$ and <i>l</i> cuts <i>x</i> -axis when $\frac{3}{2}(0) = x + 4\left(\frac{3}{2}\right)^2 \Rightarrow x =$	M1	2.1
	x = -9	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \Rightarrow \operatorname{Area}(R) = \frac{1}{2}(99)(12) - \int_0^9 4x^{\frac{1}{2}} dx$	M1	2.1
	$\frac{1}{2}$ $\frac{1}{4r^2}$ $\frac{3}{2}$ $\frac{3}{2}$	M1	1.1b
	$\int 4x^{\frac{1}{2}} dx = \frac{4x^{\frac{2}{2}}}{\left(\frac{3}{2}\right)} (+c) \text{ or } \frac{8}{3}x^{\frac{3}{2}} (+c)$	A1	1.1b
	Area(R) = $\frac{1}{2}(18)(12) - \frac{8}{3}\left(9^{\frac{3}{2}} - 0\right) = 108 - 72 = 36 *$	A1*	1.1b
		(8)	

Question	Scheme	Marks	AOs
	5(c) Alternative 1		
	$B\left(-4,\frac{10}{3}\right)$ into $l \Rightarrow \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1	1.1b
	$p = \frac{3}{2}$ into l gives $\frac{3}{2}y = x + 4\left(\frac{3}{2}\right)^2 \implies x =$	M1	2.1
	$x = \frac{3}{2}y - 9$	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \Rightarrow \operatorname{Area}(R) = \int_{0}^{12} \left(\frac{1}{16}y^{2} - \left(\frac{3}{2}y - 9\right)\right) dy$	M1	2.1
	$\left[\left(\frac{1}{16} y^2 - \frac{3}{2} y + 9 \right) dy = \frac{1}{48} y^3 - \frac{3}{4} y^2 + 9y \ (+c) \right]$	M1	1.1b
	$\int (16^3 2^{5+1})^{45} 48^5 4^{5+15} (10^5)$	A1	1.1b
	Area(R) = $\left(\frac{1}{48}(12)^3 - \frac{3}{4}(12)^2 + 9(12)\right) - (0)$ = 36 - 108 + 108 = 36 *	A1*	1.1b
		(8)	
	5(c) Alternative 2		<u> </u>
	$B\left(-4,\frac{10}{3}\right)$ into $l \Rightarrow \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1	1.1b
	$p = \frac{3}{2}$ and <i>l</i> cuts px-axis when $\frac{3}{2}(0) = x + 4\left(\frac{3}{2}\right)^2 \Rightarrow x =$	M1	2.1
	x = -9	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \text{ and } x = 0 \text{ in } l : y = \frac{2}{3}x + 6 \text{ gives } y = 6$ $\Rightarrow \operatorname{Area}(R) = \frac{1}{2}(9)(6) + \int_{0}^{9} \left(\left(\frac{2}{3}x + 6\right) - \left(\frac{4x^{\frac{1}{2}}}{2}\right) \right) dx$	M1	2.1
	$\int \left(\frac{2}{3}x + 6 - 4x^{\frac{1}{2}}\right) dx = \frac{1}{3}x^2 + 6x - \frac{8}{3}x^{\frac{3}{2}} (+c)$	M1	1.1b
	$\int \left(\frac{3}{3}^{x} + 0 - 4x^{2} \right)^{dx} = \frac{3}{3}^{x} + 0x - \frac{3}{3}^{x^{2}} (+c)$	Al	1.1b
	Area(R) = 27 + $\left(\left(\frac{1}{3}(9)^2 + 6(9) - \frac{8}{3}(9^{\frac{3}{2}})\right) - (0)\right)$ = 27 + (27 + 54 - 72) = 27 + 9 = 36 *	A1*	1.1b
	$-2i + (2i + 3\pi - i2) - 2i + 7 - 30$	(8)	
	1		narks)
(12 marks)			

Question 5 notes:	
(a)	
B1:	Substitutes $y_p = 8p$ into y^2 to obtain $64p^2$ and substitutes $x_p = 4p^2$ into 16x to
	obtain $64p^2$ and concludes that P lies on C
(b)	
M1:	Uses the given formula to deduce the derivative. Alternatively, may differentiate using chain rule to deduce it
M1:	Applies $y - 8p = m(x - 4p^2)$, with their tangent gradient <i>m</i> , which is in terms of <i>p</i> .
	Accept use of $8p = m(4p^2) + c$ with a clear attempt to find c
A1*:	Obtains $py = x + 4p^2$ by cso
(c)	
M1:	Substitutes their $x = "-a"$ and $y = \frac{10}{3}$ into l
M1:	Obtains a 3 term quadratic and solves (using the usual rules) to give $p = \dots$
M1: <i>x</i> =	Substitutes their p (which must be positive) and $y = 0$ into l and solves to give
A1: $A =$	Finds that <i>l</i> cuts the <i>x</i> -axis at $x = -9$
M1:	Fully correct method for finding the area of <i>R</i>
	i.e. $\frac{1}{2}$ (their $x_p - "-9"$)(their y_p) $- \int_0^{\text{their } x_p} 4x^{\frac{1}{2}} dx$
M1:	Integrates $\pm \lambda x^{\frac{1}{2}}$ to give $\pm \mu x^{\frac{3}{2}}$, where $\lambda, \mu \neq 0$
A1:	Integrates $4x^{\frac{1}{2}}$ to give $\frac{8}{3}x^{\frac{3}{2}}$, simplified or un-simplified
A1*:	Fully correct proof leading to a correct answer of 36
(c)	Alternative 1
M1: S	ubstitutes their $x = "-a"$ and $y = \frac{10}{3}$ into l
M1: C	btains a 3 term quadratic and solves (using the usual rules) to give $p = \dots$
Substi	tutes their p (which must be positive) into l and rearranges to give $x =$
M1: F	inds <i>l</i> as $x = \frac{3}{2}y - 9$
	ally correct method for finding the area of R
M1: i.	e. $\int_{0}^{\text{their } y_{p}} \left(\frac{1}{16}y^{2} - \text{their}\left(\frac{3}{2}y - 9\right)\right) dy$
M1: I	integrates $\pm \lambda y^2 \pm \mu y \pm v$ to give $\pm \alpha y^3 \pm \beta y^2 \pm v y$, where $\lambda, \mu, v, \alpha, \beta \neq 0$
A1: In	tegrates $\frac{1}{16}y^2 - \left(\frac{3}{2}y - 9\right)$ to give $\frac{1}{48}y^3 - \frac{3}{4}y^2 + 9y$, simplified or un-simplified
A1*:]	Fully correct proof leading to a correct answer of 36

Question 5 notes continued:

(c) Alternative 2

Substitutes their x = "-a" and $y = \frac{10}{3}$ into l M1: M1: Obtains a 3 term quadratic and solves (using the usual rules) to give $p = \dots$ Substitutes their p (which must be positive) and y = 0 into l and solves to give $x = \dots$ M1: A1: Finds that *l* cuts the *x*-axis at x = -9Fully correct method for finding the area of RM1: i.e. $\frac{1}{2}$ (their 9)(their 6) + $\int_{0}^{\text{their } x_{p}} \left(\text{their } \left(\frac{2}{3}x + 6 \right) - \left(4x^{\frac{1}{2}} \right) \right) dy$ Integrates $\pm \lambda x \pm \mu \pm v x^{\frac{1}{2}}$ to give $\pm \alpha x^2 \pm \mu x \pm \beta x^{\frac{3}{2}}$, where $\lambda, \mu, v, \alpha, \beta \neq 0$ M1: Integrates $\left(\frac{2}{3}x+6\right) - \left(4x^{\frac{1}{2}}\right)$ to give $\frac{1}{3}x^2 + 6x - \frac{8}{3}x^{\frac{3}{2}}$, simplified or un-simplified A1: A1*: Fully correct proof leading to a correct answer of 36