Paper 2 Option G

Question	Scheme	Marks	AOs
1(a)	H ₀ : There is no association between language and gender	B1	1.2
		(1)	
(b)	$\frac{54 \times 85}{150} = 30.6$ *	B1*cso	1.1b
	150		
		(1)	
(c)	Language		
	Expected French Spanish Mandarin		
	trequencies	M1	2.1
	Gender Male 26.43 23.4 15.16		2.1
	Gender Female 34.56 [30.6] 19.83		
	$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{(23-26.43)^{2}}{26.43} + \dots + \frac{(15-19.83)^{2}}{19.83}$	M1	1.1b
	- E 26.43 19.83 Awrt 3.6/3.7	A 1	1 11.
	Awit <u>5.0/5.7</u>	Al	1.1b
(1)		(3)	
(d)	Degrees of freedom $(3-1)(2-1) \rightarrow$ Critical value $\chi^2_{2,0.01} = 9.210$	M1	3.1b
	As $\sum \frac{(O-E)^2}{E} < 9.210$, the null hypothesis is not rejected	A1	2.2b
	As $\sum \frac{1}{E} < 9.210$, the null hypothesis is not rejected	AI	2.20
		(2)	
(e)	Still not rejected since $\sum \frac{(O-E)^2}{E} < \chi^2_{2,0.1} = 4.605$	B1	2.4
		(1)	
			narks)
Notes:		(0 1	
(a)			
	correct hypothesis in context		
(b) B1*: For a	a correct calculation leading to the given answer and no errors seen		
$\frac{\mathbf{b1} \cdot \mathbf{r} \mathbf{c}}{\mathbf{c}}$	a confect carearation reading to the given and no enors seen		
M1: For a	attempt at $\frac{(\text{Row Total})(\text{Column Total})}{(\text{Grand Total})}$ to find expected frequencies		
M1: For a	applying $\sum \frac{(O-E)^2}{E}$		
A1: awrt	3.6 or 3.7		
(d)			
M1: For	using degrees of freedom to set up a χ^2 model critical value		
A1: For	correct comparison and conclusion		
(e)			
Alft: For	correct conclusion with supporting reason		

Further Statistics 1 Mark Scheme (Section A)

Question	Scheme	Marks	AOs
2(a)	-4 = 2 - 5E(X)	M1	3.1a
	E(X) = 1.2		
	$-1 \times c + 0 \times a + 1 \times a + 2 \times b + 3 \times c = 1.2$	M1	1.1b
	a + 2b + 2c = 1.2 1		
	$P(Y \ge -3) = 0.45$ gives $P(2-5X \ge -3) = 0.45$		
	i.e. $P(X \le 1) = 0.45$	M1	2.1
	2a + c = 0.45 2		
	2a+b+2c=1	M1	1.1b
	$ \begin{pmatrix} 1 & 2 & 2 \\ 2 & 0 & 1 \\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1.2 \\ 0.45 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 2 & -3 \\ -2 & -3 & 4 \end{pmatrix} \begin{pmatrix} 1.2 \\ 0.45 \\ 1 \end{pmatrix} \underline{\text{or}} $	M1	1.1b
	e.g. $\boxed{3} - \boxed{2} \Rightarrow b + c = 0.55$ sub. $2(b+c)$ into $\boxed{1} \Rightarrow a = 0.1$ etc		
	a = 0.1 $b = 0.3$ $c = 0.25$	Al	1.1b
		A1	1.1b
		(7)	1.1
	$Var(Y) = 75 - (-4)^2 \text{ or } 59$	M1	1.1a
(b)	$[Var(Y) = 5^{2}Var(X) \text{ implies}] Var(X) = 2.36$	A1	1.2
		(2)	
	$P(Y > X) = P(2 - 5X > X) \rightarrow P(X < \frac{1}{3})$	M1	3.1a
(c)	$P(X < \frac{1}{3}) = a + c = 0.35$	A1ft	1.1b
		(2)	
		(11 marks)	
Notes:			

(a)

M1: For using given information to find an expression for E(X) i.e. use of E(Y) = 2 - 5E(X)

M1: For use of $\sum x P(X = x) = `1.2'$

M1: For use of $P(Y \ge -3) = 0.45$ to set up the argument for solving by forming an equation in *a* and *c*

M1: For use of $\sum P(X = x) = 1$

M1: For solving their 3 linear equations (matrix or elimination)

- A1: For any 2 of a, b or c correct
- A1: For all 3 correct values

Question 2 notes continued:

Quest	Question 2 notes continued:		
Another method for part (a) is:			
M1:	For using given information to find the probability distribution for Y leading to an expression for $E(Y)$		
M1:	For use of $\sum y P(Y = y) = -4$		
M1:	For use of P($Y \ge -3$) = 0.45 to set up the argument for solving by forming an equation		
	in a and c		
M1:	For use of $\sum P(Y = y) = 1$		
M1:	For solving their 3 linear equations (matrix or elimination)		
A1:	For any 2 of a, b or c correct		
A1:	For all 3 correct values		
(b)			
M1:	For use of $Var(Y) = E(Y^2) - [E(Y)]^2$ (may be implied by a correct answer)		
A1:	For use of $Var(aX) = a^2 Var(X)$ to reach 2.36 or exact equivalent		
(c)			
M1:	For rearranging to the form $P(X \le k)$		
A1ft:	0.1' + '025' (provided their a and c and their $a + c$ are all probabilities)		
Anoth	Another method for part (c) is:		
M1:	For comparing distribution of X with distribution of Y to identify $X = -1$ and $X = 0$		
A1ft:	$(0.1)^{2} + (025)^{2}$ (provided their <i>a</i> and <i>c</i> and their <i>a</i> + <i>c</i> are all probabilities)		

1

Quest	ion Scheme	Marks	AOs
3(a	$X \sim Po(2.6)$ $Y \sim Po(1.2)$		
	P(each hire 2 in 1 hour)	M1	3.3
	$= P(X=2) \times P(Y=2) = 0.25104 \times 0.21685$	M1	3.3
	= 0.05444 awrt 0.0544	A1	1.1b
		(2)	
(b)	$W = X + Y \rightarrow W \sim \text{Po}(3.8)$	M1	3.4
	P(W=3) = 0.20458 awrt <u>0.205</u>	A1	1.1b
		(2)	
(c)	$T \sim \text{Po}((2.6+1.2) \times 2)$	M1	3.3
	P(T < 9) = 0.64819 awrt <u>0.648</u>	A1	1.1b
		(2)	
(d)	(i) Mean = $np = 2.4$	B1	1.1b
	(ii) Variance = $np(1-p) = 2.3904$ awrt <u>2.39</u>	B1	1.1b
		(2)	
(e)	(i) $[D \sim Po(2.4) P(D \leq 4)]$		
	= 0.9041 awrt <u>0.904</u>	B1	1.1b
	(ii) Since <i>n</i> is large and <i>p</i> is small/mean is approximately equal to variance	B1	2.4
		(2)	
		(10 r	narks)
Notes			
(a) M1:	For $P(X=2) \times P(Y=2)$ from $X \sim Po(2.6)$ and $Y \sim Po(1.2)$ i.e. correct mode	lels (mav h	e
1,11,	implied by correct answer)	iens (may o	C
A1:	awrt 0.0544		
(b) M1.	For combining Deisson distributions and use of De('2.9') (may be implied	by correct	
M1:	For combining Poisson distributions and use of Po('3.8') (may be implied answer)	by correct	
A1:	awrt 0.205		
(c)			
M1:	For setting up a new model and attempting mean of Poisson distribution (n by correct answer)	nay be imp	lied
A1:	awrt 0.648		
(d)(i)			
B1:	For 2.4		
(d)(ii)			
B1:	For awrt 2.39		
(e)(i) B1:	For awrt 0.904		
	1 VI 41111 V./VT		
(e)(ii) B1:	For a correct explanation to support use of Poisson approximation in this c	ase	

Questio	on Scheme	Marks	AOs
4(a)	(i) $P(X=1) = 0.34523$ awrt <u>0.345</u>	B1	1.1b
	(ii) $P(X \le 4) = 0.98575$ awrt <u>0.986</u>	B1	1.1b
		(2)	
(b)	$\frac{(0\times10)+1\times16+2\times7+3\times4+4\times2+(5\times0)+6\times1}{40}=1.4*$	B1*cso	1.1b
		(1)	
(c)	$r = 40 \times 0.34523$ $s = 40 \times 1 - 0.986$	M1	3.4
	r = 13.81 $s = 0.57$	A1ft	1.1b
		(2)	
(d)	H ₀ : The Poisson distribution is a suitable model H ₁ : The Poisson distribution is not a suitable model	B1	3.4
	[Cells are combined when expected frequencies < 5] So combine the last 3 cells	M1	2.1
	$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{(10-9.86)^{2}}{9.86} + \dots + \frac{(7-(4.51+1.58+0.57))^{2}}{(4.51+1.58+0.57)}$	M1	1.1b
	awrt 1.1	A1	1.1b
	Degrees of freedom = $4 - 1 - 1 = 2$	B1	3.1b
	(Do not reject H ₀ since $1.10 < \chi^2_{2,(0.05)} = 5.991$). The number of mortgages approved each week follows a Poisson distribution	A1	3.5a
		(6)	
		(11 n	narks)
Notes:			
(a)(i) B1: a	wrt 0.345		
	wrt 0.986		
	for a fully correct calculation leading to given answer with no errors seen		
	For attempt at <i>r</i> or <i>s</i> (may be implied by correct answers) For both values correct (follow through their answers to part (a))		
(d) B1: F M1: F in	For both hypotheses correct (lambda should not be defined so correct use of the model) For understanding the need to combine cells before calculating the test statistic (may be implied)		
M1: F	For attempt to find the test statistic using $\chi^2 = \sum \frac{(O-E)^2}{E}$		
A1: a B1: F	awrt 1.1 For realising that there are 2 degrees of freedom leading to a critical value of $\chi_2^2(0.05) = 5.991$		
A1: C	Concluding that a Poisson model is suitable for the number of mortgages ap	pproved ea	ch