

GCE AS MARKING SCHEME

SUMMER 2023

AS FURTHER MATHEMATICS UNIT 3 FURTHER MECHANICS A 2305U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS FURTHER MATHEMATICS

UNIT 3 FURTHER MECHANICS A

SUMMER 2023 MARK SCHEME

Q1	Solution	Mark	Notes
(a)	Use of Hooke's Law	M1	Used, $T = \frac{\lambda x}{l}$
	$T = \frac{5gx}{0.2}$ $4g = \frac{5gx}{0.2}$ $x = $		$\lambda = 5g = 49 \qquad 4g = 39 \cdot 2$
	x = 0.16 (m) $T = 4g$	A1 [2]	Convincing
(b)	Before (at lowest point) $l = 0 \cdot 2$ $x = 0 \cdot 28$ $-PE = 0$ After (at extension $x = 0 \cdot 16$) $x = 0 \cdot 16$ $0 \cdot 12$		
	Using expression for $EE = \frac{\lambda x^2}{2l}$	M1	
	$\mathbf{EE} = \begin{cases} \frac{5g(0.28^2 - 0.16^2)}{2(0.2)} &= 6.468 = 0.66g\\ \frac{5g(0.28)^2}{2(0.2)} &= 9.604 = 0.98g\\ \frac{5g(0.16)^2}{2(0.2)} &= 3.136 = 0.32g \end{cases}$	A1	A correct expression
	Using expression for $PE = mgh$	M1	
	$PE = \begin{cases} 4g(0 \cdot 28 - 0 \cdot 16) &= 4 \cdot 704 = 0 \cdot 48g \\ 4g(0 \cdot 28) &= 10 \cdot 976 = 1 \cdot 12g \\ 4g(0 \cdot 16) &= 6 \cdot 272 = 0 \cdot 64g \\ 4g(0 \cdot 48) &= 18 \cdot 816 = 1 \cdot 92g \\ 4g(0 \cdot 36) &= 14 \cdot 112 = 1 \cdot 44g \end{cases}$	A1	A correct expression
	$KE = \frac{1}{2}(4)v^2$	B1	
	Conservation of Energy (before = after)	M1	KE, EE and PE all present
	$\frac{5g(0\cdot 28)^2}{2(0\cdot 2)} = \frac{1}{2}(4)v^2 + \frac{5g(0\cdot 16)^2}{2(0\cdot 2)} + 4g(0\cdot 12)$	A1	All correct, oe (see further notes)
	$9 \cdot 604 = 2v^2 + 3 \cdot 136 + 4 \cdot 704$		
	$v^2 = 0.882 \qquad (= 0.09g)$		
	$v = 0.9(391) \text{ (ms}^{-1})$	A1 [8]	Note $v = \frac{21\sqrt{5}}{50}$ or $v = 0 \cdot 3\sqrt{g}$
	Total for Question 1	10	

Further Notes

Alternative Solution for Conservation of Energy A1

KE = loss in EE - gain in PE

(b)

(b)

(b)

(b)

$$\frac{1}{2}(4)v^2 = \frac{5g(0.28^2 - 0.16^2)}{2(0.2)} - 4g(0.28 - 0.16)$$
 A1

$$2v^2 = 6 \cdot 468 - 4 \cdot 704$$
 $\left(2v^2 = \frac{33}{50}g - \frac{12}{25}g\right)$ or $2v^2 = 0 \cdot 64g - 0 \cdot 48g$

Alternative PE reference points

Before (at lowest point) After (at extension x = 0.16

$$\frac{5g(0\cdot28)^2}{2(0\cdot2)} - 4g(0\cdot12) = \frac{1}{2}(4)v^2 + \frac{5g(0\cdot16)^2}{2(0\cdot2)}$$
 A1

$$9 \cdot 604 - 4 \cdot 704 = 2v^2 + 3 \cdot 136$$

Alternative PE reference points

Before (at lowest point) After (at extension $x = 0 \cdot 16$)

$$\frac{5g(0\cdot28)^2}{2(0\cdot2)} - 4g(0\cdot28) = \frac{1}{2}(4)v^2 + \frac{5g(0\cdot16)^2}{2(0\cdot2)} - 4g(0\cdot16)$$
 A1

$$9 \cdot 604 - 10 \cdot 976 = 2v^2 + 3 \cdot 136 - 6 \cdot 272$$

Before (at lowest point) After (at extension x = 0.16)

$$\frac{5g(0\cdot28)^2}{2(0\cdot2)} - 4g(0\cdot48) = \frac{1}{2}(4)v^2 + \frac{5g(0\cdot16)^2}{2(0\cdot2)} - 4g(0\cdot36)$$
 A1

$$9 \cdot 604 - 18 \cdot 816 = 2v^2 + 3 \cdot 136 - 14 \cdot 112$$

Q2	Solution	Mark	Notes
(a)	$\mathbf{r}_{A} = \begin{cases} 6\mathbf{i} + 21\mathbf{j} - 8\mathbf{k} + (3\mathbf{i} - \mathbf{j} + 4\mathbf{k})t \\ \begin{pmatrix} 6 + 3t \\ 21 - t \\ 4t - 8 \end{pmatrix} \\ (6 + 3t)\mathbf{i} + (21 - t)\mathbf{j} + (4t - 8)\mathbf{k} \end{cases}$	B1	
	At $t = 5$, $\mathbf{r}_A = 21\mathbf{i} + 16\mathbf{j} + 12\mathbf{k}$	M1	Use of $t = 5$
	$ \mathbf{r}_A = \sqrt{21^2 + 16^2 + 12^2}$	m1	Attempt to find $ \mathbf{r}_{\!\scriptscriptstyle A} $
	$ \mathbf{r}_A = \sqrt{841} = 29$ (m)	A1 [4]	cao
(b)	(i) $\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$	M1	
	$\mathbf{v}_{B} = \frac{3}{2}\cos\left(\frac{t}{2}\right)\mathbf{i} + \frac{3}{2}\sin\left(\frac{t}{2}\right)\mathbf{j}$	A1	
	$ \mathbf{v}_B = \sqrt{\left(\frac{3}{2}\cos\left(\frac{t}{2}\right)\right)^2 + \left(\frac{3}{2}\sin\left(\frac{t}{2}\right)\right)^2}$	m1	FT their \mathbf{v}_B throughout
	$ \mathbf{v}_B = \sqrt{\frac{9}{4}} = \frac{3}{2} = 1 \cdot 5$ (ms ⁻¹) which is constant.	A1	cao
	(ii) Dot product, $\mathbf{v}_A \cdot \mathbf{v}_B = 0$	M1	
	$(3\mathbf{i} - \mathbf{j} + 4\mathbf{k}) \cdot \left(\frac{3}{2}\cos\left(\frac{t}{2}\right)\mathbf{i} + \frac{3}{2}\sin\left(\frac{t}{2}\right)\mathbf{j}\right) = 0$		
	$\frac{9}{2}\cos\left(\frac{t}{2}\right) - \frac{3}{2}\sin\left(\frac{t}{2}\right) = 0$	m1	
	$\tan\left(\frac{t}{2}\right) = 3$		
	$t = 2 \cdot 4(9809 \dots)$ (s)	A1	cao
		[7]	
	Total for Question 2	11	

Q3	Solution	Mark	Notes
(a)	$C = \frac{R \sin \theta}{R \cos \theta}$		$\sin \theta = \frac{5}{13}$ $\cos \theta = \frac{12}{13}$ $0 = 12$ $H = 13$
	Resolve vertically $R \sin \theta = Mg$	M1 A1	Dimensionally correct
	$\sin\theta = \frac{5}{13}$	B1	si
	$R = Mg \times \frac{13}{5}$		
	$R = \frac{13Mg}{5}$	A1	Convincing
		[4]	
(b)	N2L towards centre $R \cos \theta = Ma$	M1 A1	Dimensionally correct
	$\frac{13Mg}{5} \times \frac{12}{13} = M \frac{\left(3\sqrt{g}\right)^2}{r}$	m1	$a = \frac{v^2}{r}$
	$CP = r = \frac{15}{4} (= 3.75 \text{ m})$	A1	
	$\frac{r}{cv} = \frac{5}{12} (= \tan \theta)$	M1	oe, similar triangles
	CV = 9 (m)	A1	cao
		[6]	
	Total for Question 3	10	

Q4	Solution	Mark	Notes
(a)	(i) Work-energy principle	M1	Used, $F \times d = E$
	$16 \times d = 1440 (000)$ $d = 90 (000) \text{(km (m))}$	A1	cao, oe
	(ii) Using expression for PE or KE	M1	
	At end, $KE = \frac{1}{2}(80)(10)^2 = 4000$	A1	= 4000 J = 4 kJ
	$PE = 80gh = \begin{cases} 11200g = 109760 & \text{for} & h = 140\\ 12000g = 117600 & \text{for} & h = 150\\ 800g = 7840 & \text{for} & h = 10 \end{cases}$	A1	
	Work-energy principle (See notes)	M1	All terms included, oe
	WD = 1440000 + 4000 + 109760	A1	FT their KE and PE
	$(WD = 1440\ 000 + 4000 + 11200g)$		
	WD = 1553760 (J) (= 1553 · 760 kJ)	A1	cao
		[8]	
(b)	$R = 16$ α $80g \sin \alpha$ $80g$		$\sin\alpha = \frac{2}{7}$
	$F = \frac{250}{v}$ (maximum force)	B1	si
	Using N2L up plane with $a=0$ $F-R-mg\sin\alpha=0$	M1 A1	All forces, dim. correct Correct equation
	$F - 16 - 80g\left(\frac{2}{7}\right) = 0 F - 240 = 0$	A1	$\frac{250}{v} - 16 - 80g\left(\frac{2}{7}\right) = 0$
	$v = \frac{25}{24} = 1 \cdot 04(166 \dots)$ (ms ⁻¹) (max. speed)	A1	cao
		[5]	
	Total for Question 4	13	

Further Notes

Alternative Solution(s) for Work-energy principle

• Energy at Start (PE) + WD by cyclist = WD against resistances + Energy at end (PE+KE)

$$7840 + WD = 1440000 + 117600 + 4000$$

$$(800g + WD = 1440\ 000 + 12000g + 4000)$$

(a) (ii)

WD by cyclist = WD against resistances + Energy at end (gain in PE+KE)

$$WD = 1440\ 000 + 109760 + 4000$$

$$(WD = 1440\ 000 + 11200g + 4000)$$

Q5	Solution	Mark	Notes
(a)	Impulse $= m_B v_B - m_B u_B$ (change in momentum)	M1	Used
	=2(-6-10)		
	Impulse = 32 (Ns)	A1	
	Opposite direction to original motion	A1	
		[3]	
(b)	$A (3 \text{ kg})$ v_A V_B		
	Conservation of momentum	M1	Attempted
	$(4)(3) + (-6)(2) = 3v_A + 2v_B$	A1	All correct
	$3v_A + 2v_B = 0 \qquad \left(v_A = -\frac{2}{3}v_B\right)$		
	Loss in Kinetic energy	M1	Attempted.
	$\frac{1}{2}(3)(4)^2 + \frac{1}{2}(2)(-6)^2 - \frac{1}{2}(3)v_A^2 - \frac{1}{2}(2)v_B^2 = 45$	A1	Before = 60
	$60 - \frac{3}{2}v_A^2 - v_B^2 = 45$		After = $\frac{3}{2}v_A^2 + v_B^2$
	$3v_A^2 + 2v_B^2 = 30$		
	$3\left(\frac{-2v_B}{3}\right)^2 + 2v_B^2 = 30$	m1	One variable eliminated.
	$v_B = \pm 3$ or $v_A = \pm 2$		
	$v_A = -\frac{2}{3}(\pm 3) = \pm 2$ $v_B = -\frac{3}{2}(\pm 2) = \pm 3$		
	$(v_A, v_B) = (2, -3)$ or $(-2, 3)$	m1	
	speed $v_A = 2$ (ms ⁻¹) speed $v_B = 3$ (ms ⁻¹)	A1	cao
	Both objects are moving in the opposite direction to their original motion.	A1	
	and the tree of great motion	[8]	
	Total for Question 5	11	

Q6	Solution	Mark	Notes
(a)	$7(1-\cos\alpha) = \frac{7}{10}$ B P C $A5^{\circ}$ O	•	
	(i) Conservation of energy (PE = 0 along horizontal through 0)	M1	KE and PE in dim. correct equation
	$mg(5 + 7(1 - \cos \alpha)) = \frac{1}{2}mv^2 + mg(5\cos \theta)$	A1 A1	KE PE
	$5 \cdot 7g = 0 \cdot 5v^{2} + 5g \cos \theta$ $55 \cdot 86 = 0 \cdot 5v^{2} + 49 \cos \theta$ $2793 = 25v^{2} + 2450 \cos \theta$ $285g = 25v^{2} + 250g \cos \theta$		
	$v^2 = 111 \cdot 72 - 98 \cos \theta$ (= 11 · 4g - 10g \cos \theta)	A1 [4]	Convincing
	Alternative solution $(PE = 0 \text{ along horizontal through } B)$		
	(i) Conservation of energy	(M1)	KE and PE in dim. correct equation
	$mg(7(1-\cos\alpha)) = \frac{1}{2}mv^2 - mg(5(1-\cos\theta))$ $0 \cdot 7g = 0 \cdot 5v^2 - 5g + 5g\cos\theta$	(A1) (A1)	KE PE
	$6 \cdot 86 = 0 \cdot 5v^2 - 49 + 49\cos\theta$ $343 = 25v^2 - 2450 + 2450\cos\theta$		
	$v^2 = 111 \cdot 72 - 98 \cos \theta$ (= 11 · 4g - 10g \cos \theta)	(A1) ([4])	Convincing
	(ii) N2L towards 0	M1	Dim. correct equation $50g \cos \theta$, R opposing
	$50g\cos\theta - R = \frac{50v^2}{5}$	A1	, , , , , , , , , , , , , , , , , , ,
	$R = 50g\cos\theta - \frac{50}{5}(111 \cdot 72 - 98\cos\theta)$	m1	Substitute for v^2 (any form)
	$R = \begin{cases} 1470\cos\theta - 1117 \cdot 2\\ 150g\cos\theta - 114g \end{cases}$	A1	
		[4]	

			Г
	(iii) Loses contact when $R=0$	M1	Used. FT R from (ii)
	$1470\cos\theta - 1117\cdot 2 = 0$		or $150g\cos\theta - 114g = 0$
	$\cos \theta = \frac{114}{150}$ $\left(= \frac{1117 \cdot 2}{1470} = \frac{19}{25} \right)$		
	$\theta = 40 \cdot 5(358 \dots)^{\circ}$	A1	Accept 41 FT R from (ii)
	$\theta = 40 \cdot 5(358 \dots)^{\circ} < 45^{\circ}$		T T K HOIII (II)
	\therefore ring loses contact before reaching C	A1	FT R provided $\theta < 45^{\circ}$
		[3]	
	Alternative Solution		
	(iii) Sub. $\theta = 45^{\circ}$ into expression for R	(M1)	FT R from (ii)
	$R = -77.7(530 \dots)$	(A1)	FT R
	$R = -77.7(530 \dots) < 0$		
	\therefore ring loses contact before reaching $\mathcal C$	(A1)	FT provided $R < 0$
		([3])	
	(iv) Rubber ring may lose contact at a greater value of θ	E1	
	or Rubber ring may remain in contact until C .	F43	
		[1]	
(b)	N2L towards <i>D</i>	M1	Dim. correct equation
	At A , $\cos \alpha = 0.9$: $R_A - 50g(0.9) = 50a$	A1	Any correct equation including $R' - 50g \cos \alpha = 50a$
	$R_A = 50a + 45g > 45g = 441$		
	At B , $\cos \alpha = 1$: $R_B - 50g = 50a$		$a = \frac{v^2}{r} > 0$
	$R_B = 50a + 50g > 50g = 490$		
	$R_B > R_A > 0$ so must remain in contact	A1	Convincing
		[3]	
	Total for Question 6	15	