
## **Section A: Statistics**

| Qu           | Scheme                                                                                                                                                    | Marks        | AO    |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|--|
| <b>1</b> (a) | Positive (correlation)                                                                                                                                    | B1           | 1.2   |  |
|              |                                                                                                                                                           | (1)          |       |  |
| (b)          | Every extra point gives $\pounds 4.5(0)$ more on pay (o.e.)                                                                                               | B1 (1)       | 3.4   |  |
| (c)          | e.g. For points $< 11$ it would give pay $< 0$ which is ridiculous                                                                                        | B1 (1)       | 2.4   |  |
|              | e.g. For points < 11 it would give pay < 0 which is fidiculous                                                                                            | (1)          | 2.4   |  |
|              |                                                                                                                                                           | (1)<br>(3 ma | rks)  |  |
|              | Notes                                                                                                                                                     | (*           | )     |  |
| (a)          | B1 for "positive".                                                                                                                                        |              |       |  |
|              | Allow an interpretation e.g. "as points increase pay increases" is B1                                                                                     |              |       |  |
|              | Read whole answer: contradictory comments such as "positive correlation,                                                                                  |              |       |  |
|              | as points increase pay decreases" scores B0                                                                                                               |              |       |  |
| (b)          | P1 for any correct comment conveying idea of fs per point and                                                                                             | d includin   | a o   |  |
| (0)          | (b) B1 for any correct comment conveying idea of <u>£s per point</u> and inclu correct value; must have idea of <u>rate</u> . Can condone missing £ sign. |              |       |  |
|              | 4.5                                                                                                                                                       |              | ccept |  |
|              | e.g. "every 10 points earns an extra (or increase) of £45" is l                                                                                           | 31           |       |  |
|              | BUT "every point earns $\pounds 4.5(0)$ " is B0 doesn't have idea of ra                                                                                   |              |       |  |
|              |                                                                                                                                                           |              |       |  |
| (c)          | B1 for a suitable comment mentioning "points" or "pay" (o.e.                                                                                              |              |       |  |
|              | or commenting on "small sample" or "range of points" use                                                                                                  | ea to fina   | line  |  |
|              | <u>The following examples would score B1</u><br>Concerning that $n$ points (for $n \in 10$ Å) would give possible points                                  |              |       |  |
|              | Can say that <i>n</i> points (for $n < 10.4$ ) would give negative pa<br>Any comment suggesting that some jobs would end up with                          | -            |       |  |
|              | Don't know the <u>range of points</u> used to find the <u>regression l</u>                                                                                |              | pay   |  |
|              | A <u>small sample of size</u> 8 may not be <u>representative</u> to cover                                                                                 |              |       |  |
|              |                                                                                                                                                           |              |       |  |
|              | B0 for a focus on "qualifications" or "hours" worked only                                                                                                 |              |       |  |
|              | The following examples would score B0                                                                                                                     |              |       |  |
|              | Some jobs require no (or low) skills or qualifications (need negative pay)                                                                                |              |       |  |
|              |                                                                                                                                                           |              |       |  |

| Qu           | Scheme                                                                                                                                                                  | Marks      | AO         |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| <b>2</b> (a) | $[\text{Let } p = P(F \mid C)]$                                                                                                                                         |            |            |
|              | Tree diagram or some other method to find an equation for $p$                                                                                                           | M1         | 2.1        |
|              | $0.1 \times 0.09 + 0.3 \times 0.03 + 0.6 \times p = 0.06$                                                                                                               | A1         | 1.1b       |
|              | p = 0.07 i.e. 7%                                                                                                                                                        | A1         | 1.1b       |
|              |                                                                                                                                                                         | (3)        |            |
| (b)          | e.g. $P(B \text{ and } F) = 0.3 \times 0.03 = 0.009$ but                                                                                                                |            | <b>.</b> . |
|              | $P(B) \times P(F) = 0.3 \times 0.06 = 0.018$                                                                                                                            | B1         | 2.4        |
|              | These are not equal so not independent                                                                                                                                  |            |            |
|              |                                                                                                                                                                         | (1)        |            |
|              |                                                                                                                                                                         | (4 mark    | (\$)       |
|              | Notes                                                                                                                                                                   |            |            |
| (a)          | 6 61 F                                                                                                                                                                  |            |            |
|              | e.g. sight of tree diagram with 0.1, 0.3, 0.6 and 0.09, 0.03, p suitably                                                                                                |            |            |
|              | placed<br>e.g. sight of VD with 0.009 for $A \cap F$ and $B \cap F$ and 0.6p suitably                                                                                   |            |            |
|              | placed                                                                                                                                                                  |            |            |
|              | or attempt an equation with at least one correct numerical and                                                                                                          |            |            |
|              | one " $p$ " product (not necessarily correct) on LHS                                                                                                                    |            |            |
|              | <u>or</u> for sight of $0.06 - (0.009 + 0.009)$ (o.e. e.g. $6 - 1.8 = 4$                                                                                                | /          |            |
|              | 1 <sup>st</sup> A1 for a correct equation for <i>p</i> (May be implied by a correct answer)<br><u>or</u> for the expression $\frac{0.06 - (0.009 + 0.009)}{0.6}$ (o.e.) |            |            |
|              |                                                                                                                                                                         |            |            |
|              | $2^{nd}$ A1 for 7% (accept 0.07)                                                                                                                                        |            |            |
|              | <b>Correct Ans:</b> Provided there is no incorrect working seen award                                                                                                   | 1 3/3      |            |
|              | e.g. may just see tree diagram with 0.07 for $p$ (probably from trial a                                                                                                 |            |            |
| (b)          | B1 for a suitable explanationmay talk about 2 <sup>nd</sup> branches o                                                                                                  | n tree dia | gram       |
|              | and point out that $0.03 \neq 0.06$ but need some supporting                                                                                                            |            |            |
|              | calculation/words                                                                                                                                                       |            | 1.1.1      |
|              | Can condone incorrect use of set notation (it is not on AS spec) prov<br>the rest of the calculations and words are correct.                                            |            |            |
|              |                                                                                                                                                                         |            |            |



| Qu           | Scheme                                                                                                                                                                    | Marks      | AO     |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|--|
| <b>3</b> (a) | Let N = the number of games Naasir wins $N \sim B(15, \frac{1}{3})$                                                                                                       | M1         | 3.3    |  |
| (i)          | P(N=2) = 0.059946 awrt 0.0599                                                                                                                                             | A1         | 1.1b   |  |
| (ii)         | $P(N > 5) = 1 - P(N \le 5) = 0.38162$ awrt                                                                                                                                | A1         | 1.1b   |  |
|              | 0.382                                                                                                                                                                     | (2)        |        |  |
| (b)          | $\mathbf{U} \cdot \mathbf{n} = \begin{bmatrix} \mathbf{U} \cdot \mathbf{n} \\ \mathbf{v} \end{bmatrix}$                                                                   | (3)<br>B1  | 2.5    |  |
| (0)          | $H_0: p = \frac{1}{3}$ $H_1: p > \frac{1}{3}$                                                                                                                             |            |        |  |
|              | Let X = the number of games Naasir wins $X \sim B(32, \frac{1}{3})$                                                                                                       | M1         | 3.3    |  |
|              | $P(X \ge 16) = 1 - P(X \le 15) = 0.03765$ (< 0.05)<br>[Significant result as reject II. (the pull model) and concluded                                                    | A1         | 3.4    |  |
|              | [Significant result so reject H <sub>0</sub> (the null model) and conclude:]<br>There is evidence to support Naasir's claim (o.e.)                                        | A1         | 3.5a   |  |
|              | There is evidence to support radiant 5 claim (0.e.)                                                                                                                       | (4)        |        |  |
|              |                                                                                                                                                                           | (7 mark    | (s)    |  |
|              | Notes                                                                                                                                                                     |            |        |  |
| (a)          | M1 for selecting a binomial model with correct $n$ and $p$                                                                                                                |            |        |  |
|              | Award for sight of B(15, $\frac{1}{3}$ ) (o.e. e.g. in words) or implied by 1 correct                                                                                     |            |        |  |
|              |                                                                                                                                                                           |            |        |  |
|              | $1^{\text{st}}$ A1 for awrt 0.0599 (from a calculator). Allow 0.05995                                                                                                     |            |        |  |
|              | 2 <sup>nd</sup> A1 for awrt 0.382 (from a calculator)                                                                                                                     |            |        |  |
| (b)          | B1 for correctly stating both hypotheses in terms of $p$ or $\pi$                                                                                                         |            |        |  |
|              | Accept $p = 0.3$ or any exact equivalent. $H_1: p \ge \frac{1}{3}$ is B                                                                                                   | 0          |        |  |
|              | M1 for selecting a suitable model to use for the test.                                                                                                                    |            |        |  |
|              | Award for sight of B(32, $\frac{1}{3}$ ) (o.e. e.g. in words) or implied by 0.03765                                                                                       |            |        |  |
|              | Can also allow M1 for $P(X \le 15) = 0.962$ or better or $P(X \le 14) = 0.922$ or                                                                                         |            |        |  |
|              | better                                                                                                                                                                    |            |        |  |
|              | 1 <sup>st</sup> A1 for use of the model to calculate an appropriate probability using calc.<br>Sight of $P(X \ge 16)$ and answer awrt 0.0377                              |            |        |  |
|              | Signt of $F(X \ge 10)$ and answer awit $0.0577$                                                                                                                           |            |        |  |
| ALT          | <b>CR</b> May use CR so award $1^{st}$ A1 for CR of $X \ge 16$ must have                                                                                                  | ve seen sc | ome    |  |
|              | probabilities though: 1 of $P(X \le 15) = 0.9623$ or $P(X \le 14) = 0.9623$                                                                                               |            |        |  |
|              | 0.9223                                                                                                                                                                    |            |        |  |
|              | 2nd A1 for conclusion in context that there is summer for Massir                                                                                                          | 'a alaina  |        |  |
|              | 2 <sup>nd</sup> A1 for conclusion in context that there is support for Naasir<br>Must mention " <u>Naasi</u> r" or " <u>his</u> " and " <u>claim</u> " or " <u>method</u> |            |        |  |
|              | or e.g. probability of winning a game is $>\frac{1}{3}$ or has inc                                                                                                        |            |        |  |
|              | Dependent on M1 and $1^{st}$ A1 but can ignore hypotheses but see below                                                                                                   |            |        |  |
|              | If you see $P(X \ge 16) = 0.0376$ followed by a correct contextual                                                                                                        |            |        |  |
|              | then please award A0A1                                                                                                                                                    |            |        |  |
| SC           | <b>Use of 0.3 for</b> $\frac{1}{3}$                                                                                                                                       |            |        |  |
|              | If used 0.3 instead of $\frac{1}{3}$ in (a) and score M0A0A0 can condone                                                                                                  | use of 0.3 | in (b) |  |
|              | $1^{\text{st}}$ A1 ft needs P(X $\ge$ 16) = 0.0138                                                                                                                        |            |        |  |
|              | or CR of $X \ge 15$ and sight of 1 of $P(X \ge 15) = 0.0327$ or $P(X \ge 14) =$                                                                                           |            |        |  |
|              | 0.0694                                                                                                                                                                    |            |        |  |
|              |                                                                                                                                                                           |            |        |  |

| Qu           | Scheme                                                                                                                                                                                               | Marks     | AO    |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|
| <b>4</b> (a) | $\bar{x} = 10.2 (2222)$ awrt                                                                                                                                                                         | B1        | 1.1b  |
|              | <u>10.2</u>                                                                                                                                                                                          | (1)       |       |
| (b)          | $\sigma_x = 3.17(20227)$ awrt                                                                                                                                                                        | B1ft      | 1.1b  |
|              | <u>3.17</u>                                                                                                                                                                                          |           |       |
|              | Sight of "knots" <u>or</u> "kn" (condone knots/s etc)                                                                                                                                                | B1        | 1.2   |
|              |                                                                                                                                                                                                      | (2)       |       |
| (c)          | October since                                                                                                                                                                                        | B1        | 2.2b  |
|              | it is windier in the autumn <u>or</u> month of the hurricane <u>or</u><br>latest month in the year                                                                                                   | B1        | 2.4   |
| (1)          |                                                                                                                                                                                                      | (2)       | 1.0   |
| (d)(i)       | They represent <u>outliers</u>                                                                                                                                                                       | B1        | 1.2   |
| (ii)         | Y has low median so expect lowish mean (but outlier so $> 7$ )                                                                                                                                       |           |       |
|              | and<br>Y has big range/IQR or spread so expect larger st.dev                                                                                                                                         | M1        | 2.4   |
|              | Suggests B                                                                                                                                                                                           | A1        | 2.2b  |
|              |                                                                                                                                                                                                      | (3)       |       |
|              | Notes                                                                                                                                                                                                | (8 mark   | (\$)  |
|              |                                                                                                                                                                                                      |           |       |
| NB           | $\bar{x} = \frac{184}{18}$ and $\sigma_x = \sqrt{\frac{2062}{18} - \bar{x}^2}$                                                                                                                       |           |       |
| (a)          | B1 for $\bar{x} = 10.2$ (allow exact fraction)                                                                                                                                                       |           |       |
| (b)          | 1 <sup>st</sup> B1ft allow 3.2 from a correct expr' accept $s = 3.26(3984 n/a)$                                                                                                                      | ) [ft us  | se of |
|              | <u>Treating n/a as 0</u> May see $n = 31$ or $\overline{x} = 5.9354$ which is B0 in (a) but here                                                                                                     |           |       |
|              | in<br>(b) it gives $\sigma_x = 5.59(34)$ or $s = 5.6858$ (awrt 5.69) and scores 1 <sup>st</sup>                                                                                                      |           |       |
|              | (b) It gives $o_x = 5.59(54)$ of $s = 5.0858(awit 5.09)$ and scores 1 <sup>ad</sup><br>B1                                                                                                            |           |       |
|              | $2^{nd}$ B1 accept kn accept in (a) or (b) (allow nautical miles/hour)                                                                                                                               |           |       |
| (c)          | <ul> <li>1<sup>st</sup> B1 choosing October but accept September.</li> <li>2<sup>nd</sup> B1 for stating that (Camborne) is windier in autumn/winter months</li> </ul>                               |           |       |
|              | "because it is winter/autumn/windier/colder in "month" " Sep                                                                                                                                         |           | n" ≤  |
|              | Mar<br>scores B1B1 for "month" = Sep or Oct and B0B1 for other<br>range                                                                                                                              | months in | n     |
| (d)(i)       | B1 for outlier or the idea of an extreme value allow "anomaly"                                                                                                                                       |           |       |
| (ii)         | M1 for a comment relating to location that mentions both median and mean and a comment relating to spread that mentions both range/IQR and standard deviation and leads to choosing $B$ , $C$ or $D$ |           |       |

|     | Choosing A or E is M0                                                                                              |
|-----|--------------------------------------------------------------------------------------------------------------------|
|     | Incorrect/false statements score M0 e.g. $Q_3 = (\text{mean} + \sigma)$ or identify $Q_2 =$                        |
|     | mean                                                                                                               |
|     | or Y has small spread                                                                                              |
| ΔLT | <b>Use of outliers:</b> outlier is (mean $+ 3\sigma$ ) ( <i>B</i> = 19.9), ( <i>C</i> = 18.95), ( <i>D</i> = 20.2) |
|     | Must see at least one of these values and compare to Y's outlier[leads to D or                                     |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     | A1 for suitable inference i.e. B (accept D or B or D) M1 must be scored                                            |

| Qu           | Scheme                                                                                                                                                                                                           | Marks              | AO         |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|
| <b>5</b> (a) | P(X=4) = P(X=2) so $P(X=4) = 0.35$                                                                                                                                                                               | M1                 | 2.1        |
|              | P(X=1) = P(X=3) and $P(X=1) + P(X=3) = 1 - 0.7$                                                                                                                                                                  |                    |            |
|              | So $x$ 1 2 3 4                                                                                                                                                                                                   | A1                 | 1.1b       |
|              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                            |                    |            |
|              |                                                                                                                                                                                                                  | (2)                |            |
| (b)          | Let $A$ = number of spins that land on 4 $A \sim B(60, "0.35")$                                                                                                                                                  | B1ft               | 3.3        |
|              | $[P(A > 30) = ]  1 - P(A \leq 30)$                                                                                                                                                                               | M1                 | 3.4        |
|              | = 1 - 0.99411 = <b>awrt 0.00589</b>                                                                                                                                                                              | A1                 | 1.1b       |
| (c)          | 12                                                                                                                                                                                                               | (3)                |            |
| (0)          | $Y - X \leq 4 \implies \frac{12}{X} - X \leq 4 \text{ or } 12 - X^2 \leq 4X \text{ (since } X > 0) \text{ o.e.}$                                                                                                 | M1                 | 3.1a       |
|              | i.e. $0 \le X^2 + 4X - 12 \implies 0 \le (X+6)(X-2)$ so $X \ge 2$                                                                                                                                                | M1                 | 1.1b       |
|              | $P(Y - X \le 4) = P(X \ge 2) = 0.35 + 0.15 + 0.35 = 0.85$                                                                                                                                                        | A1                 | 3.2a       |
|              |                                                                                                                                                                                                                  | (3)                |            |
|              | N - 4                                                                                                                                                                                                            | (8 marks           | 5)         |
| (a)          | Notes<br>M1 for using the given information to obtain $P(Y = A)$                                                                                                                                                 |                    |            |
| (a)          | a) M1 for using the given information to obtain $P(X=4)$<br>Award for statement $P(X=4) = P(X=2)$ or writing $P(X=4) = 0.35$                                                                                     |                    |            |
|              | A1 for gotting fully correct distribution (any form that clearly)                                                                                                                                                | idontifica r       | orobs)     |
|              | e.g. can be list $P(X=1) = 0.15$ , $P(X=3) = \dots$ etc<br>or as a probability function<br>[Condone missing $P(X=2)$ as this is given in OP]<br>$P(X=x) = \begin{cases} 0.15 & x=1,3\\ 0.35 & x=2,4 \end{cases}$ |                    |            |
|              | [Condone missing $P(X = 2)$ as this is given in QP]                                                                                                                                                              | 0.35 x =           | = 2, 4     |
|              |                                                                                                                                                                                                                  |                    |            |
| (b)          |                                                                                                                                                                                                                  |                    |            |
|              | f.t. their $P(X = 4)$ from part (a).<br>Can be implied by $P(A \le 30) = a \text{wrt } 0.9941$ or final answer = awrt 0.00589                                                                                    |                    |            |
|              | M1 for using their model and interpreting "more than half"                                                                                                                                                       | <i>u w i i i i</i> | 00000      |
|              | Need to see $1 - P(A \leq 30)$ . Can be implied by awrt 0.0                                                                                                                                                      | 0589               |            |
|              | Can ignore incorrect LHS such as $P(A \ge 30)$                                                                                                                                                                   |                    |            |
|              | A1 for awrt 0.00589                                                                                                                                                                                              |                    |            |
| (c)          | 1 <sup>st</sup> M1 for translating the prob. problem into a <u>correct</u> mathema                                                                                                                               | tical inequ        | alitv      |
|              | Just an inequality in 1 variable. May be inside a probability                                                                                                                                                    | -                  | -          |
| ALT          | Table of values: $X$ 1234or values of                                                                                                                                                                            |                    |            |
|              | $\begin{array}{ c c c c c c } \hline Y & 12 & 6 & 4 & 3 \\ \hline Y & -X = 11, \\ \hline \end{array}$                                                                                                            |                    |            |
|              | 2 <sup>nd</sup> M1 for solving the inequality leading to a range of values, a                                                                                                                                    |                    | -          |
| ALT          | May be a quadratic or cubic but must lead to a set of value<br><b>Table or values:</b> They must state clearly which values are requir                                                                           |                    | $-\Lambda$ |
|              | Both Ms can be implied by a correct answer (or correct ft o                                                                                                                                                      |                    | tb'n)      |
|              | A1 for interpreting the inequality and solving the problem i.e                                                                                                                                                   |                    | ,          |
|              |                                                                                                                                                                                                                  |                    |            |